TRAFFIC IMPACT STUDY #### **FOR** ## EAST AURORA SCHOOL DISTRICT #131 EAST AURORA HIGH SCHOOL EXPANSION Aurora, Illinois Prepared For: East Aurora School District #131 McKnight School Service Center 417 Fifth Street Aurora, IL 60505 Job No. SD1602 June 1st 2016 Prepared By: Engineering Enterprises, Inc. 52 Wheeler Road Sugar Grove, Illinois 60554 (630)-466-6700 ## TABLE OF CONTENTS | REPORT | <u>Page</u> | |---|----------------| | INTRODUCTION | 3 | | EXECUTIVE SUMMARY | 4 | | EXISTING CONDITIONS | 5-6 | | FUTURE CONDITIONS | 7 | | TRIP GENERATION AND DISTRIBUTION | 8-10 | | EVALUATION | 11-12 | | CONCLUSIONS AND RECOMMENDATIONS | 13 | | FIGURES | EXHIBIT | | SITE LOCATION MAP | Α | | PROPOSED SITE PLAN | В | | EXISTING TRAFFIC VOLUMES | С | | 2018 BACKGROUND TRAFFIC | D | | TRIP GENERATION TRIP ASSIGNMENT – 50/50 TRAFFIC SPLIT | E, F | | TOTAL VOLUMES – 50/50 TRAFFIC SPLIT | G | | TRIP GENERATION TRIP ASSIGNMENT – 75/25 TRAFFIC SPLIT | H, I | | TOTAL VOLUMES – 75/25 TRAFFIC SPLIT | J | | APPENDIX A -TRAFFIC COUNT SUMMARY | | **APPENDIX B - ITE TRIP GENERATION** **APPENDIX C - LEVEL OF SERVICE ANALYSIS** #### INTRODUCTION The East Aurora School District (EASD) is proposing an expansion of the existing East Aurora High School which will include building expansion, rebuilding the existing football field, stormwater detention, reconfigured parking, and a new entrance on Fifth Avenue. The site is located on the south side of Fifth Avenue between the intersections of Smith Boulevard to the east and State Street to the west. A site location map for the proposed development is included as **Exhibit A**. The school will include the current 350,720 sf existing building plus the addition of another 64,840 sf to the main building and 9,150 sf of concessions and maintenance buildings for a total of approximately 415,560 sf to the main building. The proposed expansion will remove the two existing driveways off of Fifth Avenue (one entrance driveway and one exit driveway) into one combined driveway for entering and exiting traffic at Fifth Avenue and Tomcat Lane. Also included is the addition of parking along South State Street. Refer to **Exhibit B** for the proposed site plan. This Traffic Impact Study will evaluate the anticipated traffic impacts of the expansion on the surrounding roadway system. The existing traffic data will be combined with the site generated data to determine the impacts that the new proposed expanded facility will create. This report also includes a description of existing conditions, future conditions, data analysis and conclusions and recommendations. ٤ #### **EXECUTIVE SUMMARY** The Traffic Impact Study for the proposed expansion of East Aurora School District East Aurora High School on Fifth Avenue in the City of Aurora was completed in accordance with current engineering practices. The school expansion will serve up to 600 additional students upon build out. The proposed expansion will generate up to 275 additional trips with 190 entering and 85 exiting during the A.M. peak of the site and up to 225 additional trips with 72 entering and 153 exiting during the P.M. peak of the site. The detailed directional and driveway distribution is shown below in the report. Currently the driveway at Fifth Avenue and Tomcat Lane operates between a C and D level of service for the northbound approach with the highest amount of delay occurring for the exiting left turn movement. Our analysis shows that the proposed increased traffic will significantly increase the delay to the northbound approach. Post expansion, the driveway will operate between a C and F level of service for the northbound approach. With minor pavement marking improvements, the level of service can be increased, ranging from a C to an E. #### **EXISTING CONDITIONS** #### **Site Location** The parcel of property being expanded is located in the City of Aurora, Illinois and is located on the south side of Fifth Avenue between State Street and Smith Boulevard. **Exhibit A** shows the proposed site location. #### **Land Use** The proposed expansion will be contained within the existing parcel for the East Aurora High School. The existing land use surrounding the high school is residential. The existing land use can be seen in **Exhibit B**. #### **Existing Roadways** #### Fifth Avenue Fifth Avenue is an east-west local road under the maintenance and jurisdiction of the City of Aurora. The current lane configuration at the intersection of Tomcat Lane has one left turn lane in the westbound direction with a painted median on the other side of the intersection, and one through lane in each direction. There is not a posted speed limit on Fifth Avenue in this area, so the speed limit is assumed to be 25 mph. #### **Tomcat Lane** Tomcat Lane is the driveway entrance into/exit out of the East Aurora High School parking lot. The current configuration consists of two driveways with one driveway containing one entrance lane and the second driveway containing one left turn lane and one right turn lane exiting out of the school. #### **Existing Traffic Volumes** The traffic volumes for the intersection of Fifth Avenue and Tomcat Lane and at the existing driveway at South State Street and Sixth Avenue are based on traffic data collected in the field by our office on May 11, 2016 and May 5, 2016, respectively. See **Appendix A** for a summary of the results. The time periods of 7:00-9:00 AM and 1:30-3:30 PM were analyzed because the high school begins at 7:55 AM and ends at 3:04 PM. The existing 2016 traffic volumes for the peak hour of our proposed site are shown in **Exhibit C**. #### **Existing Traffic Patterns** #### Vehicular Traffic As there is currently a drop-off lane on Fifth Avenue just east of the intersection with Tomcat Lane, multiple vehicles would drop off there. In addition, some vehicles also 钽 dropped off students by stopping in the eastbound travel lane. Both of these instances affected the traffic traveling eastbound on Fifth Avenue. Several vehicles that dropped off students in the drop-off lane and the travel lane would pull into a residential driveway on the north side of Fifth Avenue to turn around. Some vehicles were also observed dropping off students by stopping in the westbound travel lane. Both of these instances affected the traffic traveling westbound on Fifth Avenue. #### Pedestrian Traffic There are currently two sidewalk ramps on the north side of Fifth Avenue at the dead end of Howell Place. The west ramp is at a marked crosswalk on Fifth Avenue, but there is also a receiving ramp on the south side of Fifth Avenue for the east ramp. For this reason, pedestrians cross at both locations. There are two more marked crosswalks along Fifth Avenue, one near the north entrance to the school and the other at the intersection with Smith Boulevard. However, students were observed crossing all along Fifth Avenue. In **Photo 1** below, pedestrians can be seen crossing in multiple locations along Fifth Avenue. On the left side of the photo, two vehicles can be seen pulling into residential driveways to turn around. On the right side of the photo, two vehicles can be seen stopped in the eastbound through travel lane to drop-off. The vehicles aren't pulled up far enough to be within the drop-off lane limits, and vehicles traveling eastbound will need to drive partially in the westbound turn lane if they want to go around them. **Photo 1. Observed Traffic Patterns** #### **FUTURE CONDITIONS** #### Roadway Network Access to the high school after the expansion will remain primarily the same as current conditions. The only difference is that the intersection of Fifth Avenue and Tomcat Lane will be condensed into one driveway, consisting of one entrance lane into the school parking lot and two lanes exiting the property (one left turn lane and one right turn lane). The driveway at the intersection of Sixth Avenue and South State Street will remain the same. Refer to **Exhibit B** for the proposed site plan. #### **Future Traffic Volumes** It is anticipated that full build-out of the property will be completed by the fall of 2018. In order to obtain 2018 background traffic figures for this study, the growth in traffic along the adjacent roadways had to be established. The existing peak hour traffic volumes on Fifth Avenue were increased by a factor of 0.8 percent per year compounded. The growth rate of 0.8 percent per year was determined using current ADT traffic volumes and a projected ADT for 2040 performed by Chicago Metropolitan Agency for Planning. **Exhibit D** illustrates the projected year 2018 peak hour volumes for the two driveways. ٤ #### TRIP GENERATION AND DISTRIBUTION The volume of traffic generated by a new development is typically based on the type of land use and the size of development, with consideration given to the amount of internal and pass-by traffic associated with the development. Due to expansion being at a high school, there is no need to consider pass-by traffic or internal trips as the trips are almost all destination oriented. #### **Trip Generation** Given the proposed use of the site Land Use (530) High School from the Institute of Transportation Engineers (ITE) report title Trip Generation, 7th edition, 2003, was the most appropriate. The ITE Trip Generation graphs are shown in **Appendix B**. **Table 1** and **Table 2** below show the entering and exiting trips for the A.M. and P.M. peak of the generator based on the increased number of students. | Land Use (I.T.E. Land Use Code) | Ctudoot | A.M. Peak Hour | | | |---------------------------------|---------------------|--------------------|-------------------|------------------| | | Student
Increase | Trips
Generated | Trips
Entering | Trips
Exiting | | High School (530) | 600 | 275 | 190 | 85 | Table 1: Trip Generation- A.M. Peak Hour | Land Use (I.T.E. Land Use Code) | P.M. Peak Hour
| | | | | |---------------------------------|---------------------|--------------------|-------------------|------------------|--| | | Student
Increase | Trips
Generated | Trips
Entering | Trips
Exiting | | | High School (530) | 600 | 225 | 72 | 153 | | Table 2: Trip Generation- P.M. Peak Hour We also established generated volumes based on projected enrollment data provided by the East Aurora School District. The district determined that there will be approximately 600 additional students attending the high school after the expansion. The following assumptions were made to estimate the trips generated: - The percentages of students that will walk to school, that will be dropped off, and that will be driving themselves is unknown. Therefore, the existing A.M. and P.M. peak hour traffic was increased by approximately 15.8% since that is the estimated increase in student population after the expansion. - The 15.8% increase in vehicular traffic was included for both driveways, the driveway at Fifth Avenue and Tomcat Lane and the driveway at the intersection of Sixth Avenue and South State Street. - Since drop-offs occur along Fifth Avenue east of the intersection with Tomcat Lane, the 15.8% increase was included for the eastbound and westbound through traffic for the driveway at Fifth Avenue and Tomcat. The eastbound through traffic increase was included in the "entering" trips and the westbound traffic through traffic increase was included in the "exiting" trips. The trip generation can be seen in the **Table 3** below. As can be seen our trips generated are significantly lower than those in the ITE Trip Generation Manual. | | | Trips | | | |---|------|-----------|----------|---------| | | | Generated | Entering | Exiting | | | A.M. | 202 | 133 | 69 | | Ī | P.M. | 159 | 75 | 84 | **Table 3: Trips Generated** Since the trips generated calculated from the ITE Trip Generation Manual yielded higher numbers, those figures were used in this analysis. #### **Directional Distribution** The directional distribution of the site generated traffic was determined based on the distribution of the existing movements at the intersection of Fifth Avenue and Tomcat Lane. Different directional distribution percentages were used for the A.M. and P.M. peak periods. The following tables (**Tables 4 through 7**) list the directional distribution utilized for this analysis. As stated previously in this report, the eastbound and westbound through movements were included in the directional distribution due to the drop-offs that occur on Fifth Avenue. | | Existing | | |----------------------|-----------|--------------| | | A.M. Peak | Directional | | Movement | Traffic | Distribution | | Eastbound Through | 287 | 52.8% | | Eastbound Right Turn | 128 | 23.5% | | Westbound Left Turn | 129 | 23.7% | Table 4: Directional Distribution - A.M. Peak Entering Traffic | Movement | Existing A.M. Peak Traffic | Directional
Distribution | |-----------------------|----------------------------|-----------------------------| | Westbound Through | 185 | 58.4% | | Northbound Left Turn | 92 | 29.0% | | Northbound Right Turn | 40 | 12.6% | Table 5: Directional Distribution – A.M. Peak Exiting Traffic | Movement | Existing
P.M. Peak
Traffic | Directional
Distribution | |----------------------|----------------------------------|-----------------------------| | Eastbound Through | 246 | 63.9% | | Eastbound Right Turn | 58 | 15.1% | | Westbound Left Turn | 81 | 21.0% | Table 6: Directional Distribution - P.M. Peak Entering Traffic | Movement | Existing
P.M. Peak
Traffic | Directional
Distribution | |-----------------------|----------------------------------|-----------------------------| | Westbound Through | 226 | 64.6% | | Northbound Left Turn | 67 | 19.1% | | Northbound Right Turn | 57 | 16.3% | Table 7: Directional Distribution – P.M. Peak Exiting Traffic For the purpose of this analysis, it was assumed that 50-75% of the site generated traffic would travel through Driveway 1 (Fifth Avenue and Tomcat Lane). The cars entering and exiting would follow the directional distribution as stated above. **Exhibit E** and **Exhibit F** show the traffic generated by the site in the A.M. and P.M. peak assuming the trip generation is split equally between the two driveways. **Exhibit H** and **Exhibit I** show the traffic generated by the site assuming 75% of the traffic travels through Driveway 1 and 25% travels through Driveway 2. Since the trip generation values only account for the increase in vehicular traffic, the pedestrian traffic was increased by 15.8% for all movements at Driveway 1. In order to determine the total traffic for 2018, the background traffic and the site generated traffic are combined using the directional distribution, entrance distribution, and the exit distribution of the site generated traffic. This results in the total projected 2018 peak hour traffic volumes as illustrated in **Exhibit G** for a 50%/50% traffic split and **Exhibit J** for a 75%/25% traffic split. الخا #### **EVALUATION** The existing Levels of Service for westbound and northbound approaches were evaluated for the intersection of Fifth Avenue and Tomcat Lane. The results are shown below in **Table 8** for the A.M. and P.M. peak hours. The program used to evaluate the LOS for the intersection, Highway Capacity Software, makes the following assumptions: - There will be no delay associated with the through movements on the major road road for a two-way stop controlled intersection. Due to this, the program does not give a LOS for the through movements or for the intersection as a whole. The westbound delay and LOS shown below is due to the left turn movement only. - Pedestrian traffic will yield to the major road vehicular movements and wait until a gap exists to cross the road. Pedestrian traffic crossing the minor street approaches will take precedence and further delay those vehicular movements. - The pedestrian flow input into the program is not the total amount of pedestrians crossing but the number of crossings instead. Therefore, a 25% reduction in pedestrian volume was used to account for some students crossing the intersection concurrently. | | A.M. Peak | | P.M. Po | eak | |------------|-----------|-----|---------|-----| | Approach | Delay | LOS | Delay | LOS | | Westbound | 3.8 | Α | 2.4 | Α | | Northbound | 50.0 | Е | 23.1 | С | **Table 8: Existing LOS and Approach Delay** The future LOS for the westbound and northbound approaches were then evaluated for the intersection for the year 2018, when the school expansion is expected to be complete. An evaluation was performed for 50% and 75% of the trip generation traffic being applied to Driveway 1. The results are shown below in **Table 9**. الخا | | A.M. Peak | | P.M. Po | eak | |-----------------------------|-----------|-----|---------|-----| | Approach | Delay | LOS | Delay | LOS | | Westbound -
50% Traffic | 4.2 | Α | 2.3 | Α | | Northbound -
50% Traffic | 134.9 | F | 32.5 | D | | Westbound -
75% Traffic | 4.3 | Α | 2.2 | Α | | Northbound -
75% Traffic | 198.4 | F | 38.6 | E | **Table 9: Future LOS and Approach Delay** The LOS for northbound approach increased significantly, especially in the A.M. peak period. One way to help mitigate that approach delay is to do some updates to the pavement markings on Fifth Avenue. Since the future driveway layout for the intersection at Tomcat Lane is further east than the current entrance driveway, the painted median to the east will need to be extended. If the painted median is instead updated to a two-way left turn lane, an assumption can be made that the TWLTL can store two vehicles. This will allow vehicles turning left onto Fifth Avenue from Tomcat Lane to begin their turning movement when there is a gap in eastbound traffic, wait in the TWLTL temporarily, and complete their turning movement when there is a gap in westbound traffic. The northbound left turning movement had a worse delay than the northbound right turning movement, so that restriping will make a huge impact on the approach LOS. The results of that analysis are shown below in **Table 10**. | | A.M. Peak | | P.M. Po | eak | |-----------------------------|-----------|-----|---------|-----| | Approach | Delay | LOS | Delay | LOS | | Westbound -
50% Traffic | 4.2 | Α | 2.3 | А | | Northbound -
50% Traffic | 37.8 | E | 18.6 | С | | Westbound -
75% Traffic | 4.3 | Α | 2.2 | Α | | Northbound -
75% Traffic | 52.2 | F | 19.7 | С | Table 10: Future LOS and Approach Delay with Median Storage Please refer to **Appendix C** to view the HCS Level of Service Summary Data. **Note:** Average delay in seconds/vehicle. #### **CONCLUSIONS AND RECOMMENDATIONS** The purpose of this Traffic Impact Study is to determine the effects of the proposed EASD East Aurora High School expansion, along with the growth in background traffic on the existing intersection at Fifth Avenue and Tomcat Lane. The analyses included in the Traffic Impact Study are based on the design year of 2018, which is the estimated year the school expansion is to be complete. The results of this traffic study for the East Aurora School District in Aurora, Illinois revealed that the traffic on Fifth Avenue experiences minimal impact due to the proposed school expansion. As shown in the evaluation section, the westbound LOS grade remains the same with at most a half of a second variation in the approach delay. Also shown in the evaluation section is the LOS for the northbound approach, and it can be seen that the egress to the site functions at an inadequate level. Based upon the results of this Traffic Impact Study, it is our opinion that the proposed EASD East Aurora High School expansion does not require any additional work to the existing roadway system. Our analysis shows that the projected traffic volumes from the proposed school expansion will not necessitate the addition of any through or turn lanes on
Fifth Avenue. Since left turning traffic out of the site has the highest amount of delay, countermeasures should be implemented to alleviate the problem. We recommend, at a minimum, that the pedestrian crosswalk be marked on the east side of the driveway on Fifth Avenue. This will help alleviate pedestrian impacts on the northbound left turning movement. In addition, we recommend restriping the median to the west of the driveway to become a TWLTL to allow for left turning movement vehicle storage as explained in the Evaluation section of this report. Another option to consider, instead of the restriping, is to hire someone to direct traffic at the driveway before and after school to help alleviate any significant delays. ## **Exhibits** | | | | | D1602-TRAFFIC | DSKPROJ/SD1602/DWG EXHIBIT/SI | Path: H: /S | |-------|------------------------|------------------------------|----------|---|-------------------------------|--| | NORTH | EXHIBIT B
SITE PLAN | LEGEND (XX) DRIVEWAY NUMBER | | RESIDENTAIL | | PROJECT NO: <u>SD1602</u>
FILE NO: SD1602-TRAFFIC | | | | | | ІТН ВСУD. | WS | | | | | RESIDENTAIL | 5ТН АVЕ. | EAST AURORA
HIGH SCHOOL | | | | | | | | | | S | | | | | | .TS 3TATS 8 | <u> </u> | es,
2016 ENGINEERING ENTERPRISES, INC. | | | | | | ¥ | | EERING EN | | | | | | RESIDENTAIL | 67H AVE | s,
016 ENGINI | | | | | | A SECTION AND | gineerin | o o | | | | | | | | Enter
Inc.
COPYRIGHT | # **Appendix A** # Traffic Count Summary Left Total Eastbound 5th Avenue Thru Right #### Turning Movement Peak Hour Details Left Right Northbound **Tomcat Lane** Thru Left Westbound 5th Avenue Thru Right Left Southbound **Tomcat Lane** Thru Right Interval | 6:45 AM | | 0 | 0 | 0 | 0 | 5 | 2 | | 0 | 0 | 0 | 1 | | 4 | 0 | 12 | |----------------|---------------------|---------|------------------|---|-----------|--------------|--------------------|------------|---------------------|-----|--------------|--------------|---------|---------|---|---------------| | 7:00 AM | | 0 | 0 | 0 | 0 | 20 | 37 | | 9 | 0 | 7 | 7 | | 60 | 0 | 140 | | 7:15 AM | | 0 | 0 | 0 | 0 | 43 | 43 | 1 | 0 | 0 | 15 | 37 | | 78 | 0 | 226 | | 7:30 AM | | 0 | 0 | 0 | 0 | 50 | 30 | | 8 | 0 | 43 | 46 | , (| 81 | 0 | 258 | | 7:45 AM | | 0 | 0 | 0 | 0 | 72 | 19 | 1 | 3 | 0 | 27 | 38 | . (| 68 | 0 | 237 | | 8:00 AM | | 0 | 0 | 0 | 0 | 51 | 6 | | 6 | 0 | 8 | 5 | | 61 | 0 | 137 | | 8:15 AM | | 0 | 0 | 0 | 0 | 58 | 4 | | 6 | 0 | 1 | 2 | ! - | 77 | 0 | 148 | | 8:30 AM | | 0 | 0 | 0 | 0 | 43 | 8 | | 4 | 0 | 3 | 3 | | 77 | 0 | 138 | | 8:45 AM | | 0 | 0 | 0 | 0 | 26 | 14 | 1 | 0 | 0 | 8 | 2 | ! 4 | 48 | 0 | 108 | | 9:00 AM | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | C |) | 0 | 0 | 0 | | Totals | | 0 | 0 | 0 | 0 | 368 | 163 | 6 | 6 | 0 | 112 | 141 | 5! | 54 | 0 | 1404 | | Entering | | 0 | | | | 531 | | | 178 | | | | 695 | | | | | Exiting | | 304 | 1 | | | 480 | | | 0 | | | | 620 | | | | | | Mort | h | Foot | | Court | · la | Most | | Total | | | | | | | | | Pedestrians | <u>Nortl</u>
173 | | <u>East</u>
3 | | Sout
5 | <u>.m</u> | <u>West</u>
120 | | <u>Total</u>
301 | | | | | | | | | reuestrians | 1/3 | | 3 | | 5 | | 120 | | 301 | | | | | | | | | Vehicle Totals | | | | | | | | | | | | | | | | | | Car | | 0 | 0 | 0 | 0 | 362
98.4% | 162
99.4% | 6
97.09 | | 0 | 109
97.3% | 137
97.2% | | 33
% | 0 | 1367
97.4% | | SU | | 0 | 0 | 0 | 0 | 6 | 1 | | 2
2 | 0 | 3 | 4 | | 21 | 0 | 37 | | | | | 0 | 0 | Ŭ | 1.6% | 0.6% | 3.09 | 6 | 0 | 2.7% | 2.8% | 3.8 | % | Ü | 2.6% | | | | | | | | Peak H | lour: 7:0 | OO AM • | 8:00 A | М | | | | | | | | | | Southbo | ound | | l v | /estbound | d | ĺ | Northbo | und | | | Eastbou | und | 1 | | | | - | Tomcat | | | 5t | h Avenu | е | т | omcat l | Lan | е | 5 | th Ave | nue | | | | | Right | Thru | Left | | | | | Right | Thru | L | eft | Right | Thru | Left | | Total | | Totals | 0 | 0 | 0 | | 0 | 185 | 129 | 40 | 0 | 9 | 2 | 128 | 287 | 0 | ć | 861 | | Factor | - | - | - | | - (| 0.64 | 0.75 | 0.77 | - | 0 | .53 | 0.70 | 0.89 | - | (| 0.83 | | Entering | | 0 | | | | 314 | | | 132 | | | | 415 | | | | | Factor | | | | | | 0.86 | | | 0.65 | | | | 0.82 | | | | | Exiting | | 257 | , | | | 277 | | | 0 | | | | 327 | | | | | Factor | | 0.80 |) | | | 0.70 | | | | | | | 0.92 | | | | | | | | | | | | | • | | | ' | | | | | | | B. L. L. C. | <u>Nortl</u> | | <u>East</u> | | Sout | <u>th</u> | West | | <u>Total</u> | | | | | | | | | Pedestrians | 170 | 1 | 1 | | 4 | | 103 | | 278 | | | | | | | | | Peak Vehicles | î. | | | | i | | | i . | | | 1 | 1 | | | | | | Car | | 0 | 0 | 0 | 0 | 183
98.9% | 128
99.2% | 97.59 | | 0 | 91
98.9% | 125
97.7% | | 77
% | 0 | 843
97.9% | | SU | | | | | | 2 | 1 | | 1 | | 1 | 3 | | 10 | | 18 | | 30 | | 0 | 0 | 0 | 0 | 1.1% | 0.8% | 2.59 | | 0 | 1.1% | 2.3% | | | 0 | 2.1% | | North | Tomcat Lane | Total o o o o | | |-----------------|-------------|-------------------------|-----------------| | 5th Avenue | | 0 170 0 | 5th Avenue | | Factor 277 | 0 | Peak Start 0
7:00 AM | 0 Total
314 | | Total 0 1 | 103 | Volume 861 1 | Factor 0.86 | | Factor 0.82 128 | 0 | Factor 0.83 0 | 327 Factor 0.92 | | | | 0 4 0 | | | | Tomcat Lane | 257 | | Eastbound #### Turning Movement Peak Hour Details Northbound Westbound Southbound | | | utribouriu | | | Stbourk | | | וטו נוווטטע | | | Eastbouri | | | |----------------|--------------|---------------|------|-------|--------------|-------------|-------------|--------------|---------------|-------------|-----------|------|--------------| | | Ton | ncat Lane | | 5th | Avenu | ie | To | mcat La | ane | 5 | th Aven | ue | | | Interval | Right | Thru | Left | Right | Thru | Left | Right | Thru | ı Left | Right | Thru | Left | Total | | 1:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| 0 | 0 | 0 | 0 | 0 | | 1:30 PM | 0 | 0 | 0 | 0 | 54 | 6 | 9 | C |) 6 | 5 | 54 | 0 | 134 | | 1:45 PM | 0 | 0 | 0 | 0 | 63 | 8 | 4 | (|) 11 | 6 | 52 | 0 | 144 | | 2:00 PM | 0 | 0 | 0 | 0 | 65 | 13 | 17 | C |) 4 | 2 | 56 | 0 | 157 | | 2:15 PM | 0 | 0 | 0 | 0 | 58 | 6 | 10 | C |) 11 | 4 | 69 | 0 | 158 | | 2:30 PM | 0 | 0 | 0 | 0 | 69 | 9 | 5 | C |) 3 | 8 | 83 | 0 | 177 | | 2:45 PM | 0 | 0 | 0 | 0 | 69 | 19 | 7 | C |) 3 | 14 | 64 | 0 | 176 | | 3:00 PM | 0 | 0 | 0 | 0 | 42 | 23 | 12 | C | 30 | 14 | 51 | 0 | 172 | | 3:15 PM | 0 | 0 | 0 | 0 | 46 | 30 | 33 | C | 31 | 22 | 48 | 0 | 210 | | 3:30 PM | 0 | 0 | 0 | 0 | 8 | 2 | 0 | C |) 2 | 1 | 5 | 0 | 18 | | Totals | 0 | 0 | 0 | 0 | 474 | 116 | 97 | (| 101 | 76 | 482 | 0 | 1346 | | Entering | | 0 | | | 590 | | | 198 | | | 558 | | | | Exiting | | 192 | | | 575 | | | 0 | | | 579 | | | | | | | | | | | | | | | | | - | | | <u>North</u> | <u>East</u> | | South | 1 | West | | <u>Total</u> | | | | | | | Pedestrians | 2 | 214 | | 95 | | 12 | | 323 | | | | | | | /ehicle Totals | | | | | | | | | | | | | | | | l _ | _ | _ | Ī _ | 463 | 112 | 90 | _ | 99 | 71 | 451 | _ | 1286 | | Car | 0 | 0 | 0 | 0 | 97.7% | 96.6% | 92.8% | | 98.0% | 93.4% | | | 95.5% | | SU | 0 | 0 | 0 | 0 | 11 | 4 | 7 | (| 2 | 5 | 31 | 0 | 60 | | 30 | U | 0 | 0 | U | 2.3% | 3.4% | 7.2% | | 2.0% | 6.6% | 6.4% | | 4.5% | | | | | | | Da ala II | | 00 DM | 2.20 DI | | | | | | | | | | | | Реак п | lour: 2: | O PIVI - | 3:30 PIV | ı | ı | | | | | | Sou | uthbound | | We | estbound | t | N | orthbou | nd | ı | Eastboun | d | | | | | ncat Lane | | | Avenu | | | mcat La | | | th Avenu | | T . 1 . 1 | | | Right TI | hru Left
0 | | 0 | | Left | Ü | Thru
0 | Left | | Thru | Left | Total | | otals | 0 0 | | | | | 81 | 1 | | 67 | 58 | 246 | 0 | 735 | | actor | | - | | - 0. | .82 (| 0.68 | 0.43 | - | 0.54 | 0.66 | 0.74 | - | 0.88 | | | | | | | | | | | | | | | | | ntering | | 0 | | | 307 | | | 124 | | | 304 | | | | actor | | | | | 0.87 | | | 0.48 | | | 0.84 | | | | wither | | | | | | | | | | | | | | | Exiting | | 139 | | | 293 | | | 0 | | | 303 | | | | actor | I | 0.67 | | | 0.95 | | | | | I |
0.86 | | I | | | <u>North</u> | <u>East</u> | | South | 1 | West | | <u>Total</u> | | | | | | | edestrians | 2 | 205 | | 90 | - | 12 | • | 309 | Peak Vehicles | ı | | | Ī | | | İ _ | | | l _ | | | I _ | | Car | 0 | 0 | 0 | 0 | 220
97.3% | 77
95.1% | 53
93.0% | |) 66
98.5% | 57
98.3% | | | 704
95.8% | | | - | | | | | | | | 90.376 | | | | | | SU | 0 | 0 | 0 | 0 | 6
2.7% | 4
4.9% | 7.0% | | 1.5% | 1.7% | | | 31
4.2% | | | 1 | | |] | 2.170 | 7.770 | 7.070 | | 1.570 | 1.770 | J. 1 /0 | | 4.2/0 | | North | Tomcat Lane | Total
0
0 0 | · 1 | î
° | | | | | |----------------|-------------|-----------------------|--------------------|--------------------------|-----|-----------|---------------|----------------| | 5th Avenue | | 0 | 2 | 0 | | į | 5th Aven | ue | | Factor 293 | 0 | | ak Start
:30 PM | | 0 | Ŷ | 0
226 | Total
307 | | Total 0 1 | 12 | V | olume
735 | | 205 | , <u></u> | 81 | Factor
0.87 | | Factor 0.84 58 | 0 | | O.88 | | 0 | 303 | \Rightarrow | Factor
0.86 | | | | 0 | 90 | 0 | | | | | | | Tomcat Lane | 139
Factor
0.67 | To
12
Fac | 57 57 stall 224 sttor 48 | | | | | #### Turning Movement Peak Hour Details | | | Southbo | und | | Westbound | | | Northbound | | | | Eastbound | | | | | | |----------------|--------------|---------------------|-------------|------------|--------------|--------------------------|-------------|------------|--------------|------|--|-----------|----|---------------------------|------------|-------|-------------| | | 5 | State St | reet | | Pai | rking L | .ot | | | | | | 61 | th Ave | | | | | Interval | Righ | | | Left | Right | Thru | | Rigl | | hru | Left | Righ | | Thru | Left | To | <u>otal</u> | | 6:45 AM | |) | 0 | 0 | 0 | О | | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | | 7:00 AM | | 1 | 0 | 0 | 0 | C | | | 0 | 0 | 0 | | 0 | 14 | 0 | | 15 | | 7:15 AM | | 1 | 0 | 3 | 1 | 8 | | | 0 | 0 | 0 | | 0 | 41 | 1 | | 55 | | 7:30 AM | | 4 | 0 | 4 | 0 | 51 | | | 0 | 0 | 0 | | 0 | 144 | 1 | | 204 | | 7:45 AM | 1. | | 0 | 6 | 1 | 60 | | | 0 | 0 | 0 | | 0 | 105 | 5 | | 188 | | 8:00 AM | | 9 | 0 | 1 | 0 | 2 | | | 0 | 0 | 0 | | 0 | 4 | 5 | | 21 | | 8:15 AM | 23 | | 0 | 1 | 1 | 4 | | | 0 | 0 | 0 | | 0 | 5 | 15 | | 49 | | 8:30 AM | • | 1 | 0 | 0 | 0 | 2 | . 0 | | 0 | 0 | 0 | | 0 | 7 | 6 | | 16 | | 8:45 AM | (|) | 0 | 6 | 0 | С | 0 | | 0 | 0 | 0 | | 0 | 14 | 1 | | 21 | | 9:00 AM | (|) | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | | Totals | 50 |) | 0 | 21 | 3 | 127 | 0 | | 0 | 0 | 0 | | 0 | 334 | 34 | į. | 569 | | Entering | | 71 | | | | 130 | | | 0 | | | | | 368 | | | | | Exiting | | 0 | | | | 177 | | | 37 | , | | | | 355 | | | | | | North | | <u>Ea</u> | ct | South | | <u>West</u> | | <u>Total</u> | | | | | | | | | | Pedestrians | 0 | | 0 | | <u>30dii</u> | <u>!</u> | 0 | | 0 | | | | | | | | | | reacstrians | O | | O | , | O | | O | | O | | | | | | | | | | Vehicle Totals | _ | | | | - | | | | | | | | | | | _ | | | Car | 49
98.0% | | 0 | 21
100% | 3
100% | 127
100% | | | 0 | 0 | 0 | | 0 | 334
100% | 34
100% | 99. | 568
8% | | SU | 2.0% | | 0 | 0 | 0 | O | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0. | 1
2% | | | | | | | | Peak | Hour: 7: | 15 AM | - 8:15 | AM | <u>, </u> | | | | | • | | | | 1 . | S | | | l ,,, | | | I | N1 | | ĺ | | _ | | | I | | | | | Southbo
State St | | | | estbour
king L | | | Northb | ouna | | | | stbound
: h Ave | | | | | | Right | Thru | Let | ft | | hru | Left | Right | Thru | Left | | Right | | | .eft | Total | | | Totals | 25 | 0 | 14 | | _ | 21 | 0 | 0 | 0 | 0 | | 0 | 29 | | 2 | 468 | | | Factor | 0.57 | - | 0.5 | 58 | 0.50 0 | .50 | - | - | - | - | | - | 0. | 51 C | 0.60 | 0.57 | | | Entering | | 39 | | | | 123 | | | 0 | | | | | 306 | | | | | Factor | | 0.57 | | | | 0.50 | | | | | | | | 0.53 | Exiting | | 0 | | | | 146 | | | 14 | | | | | 308 | | | | | Factor | | | | | | 0.51 | | | 0.5 | 8 | | | | 0.52 | | | | | · | <u>North</u> | | <u>Ea</u> : | <u>st</u> | South | 1 | <u>West</u> | • | <u>Total</u> | | | | | | | - | | | Pedestrians | 0 | | 0 |) | 0 | | 0 | | 0 | | | | | | | | | | Peak Vehicles | | | | | | | | | | | | | | | | | | | Car | 24
96.0% | | 0 | 14
100% | 2
100% | 121
100% | | | 0 | 0 | 0 | | 0 | 294
100% | 12
100% | 99. | 467
8% | | SU | | 1 | 0 | 0 | 0 | O | | | 0 | 0 | 0 | | 0 | 0 | 0 | | 1
2% | | - | North | | | State Street | Fac
0.5
Tot
30
25 0 | 57
tal
9 | Factor 0.58 | | | | | | |---|----------------|------------|-----|--------------|---------------------------------|------------------------------|-------------|---|---|----------|---------------|----------------| | _ | 6t | h Ave | | | 0 | 0 | 0 | | | Р | arking L | .ot | | | Factor
0.51 | \Diamond | 146 | 0 | | Peak Sta i
7:15 AM | -t | | 0 | 4 | 2
21 | Total
123 | | = | Total
306 | 12 | Ŷ | 0 | | Volume
468 | | | 0 | <u>†</u> | 0 | Factor
0.50 | | _ | Factor
0.53 | 294
0 | | 0 | | Factor
0.57 | | | 0 | 308 | \Rightarrow | Factor
0.52 | | | | | | | 0 | 0 | 0 | | | | | | | | | | | | ° | \ • • | o o | > | | | | | #### Turning Movement Peak Hour Details | | | uthbound | | | estbound | | Northbound | | | | Eastbou | | | | | |--------------------|--------------|-------------------------------|------|-------------|---------------------------------|-------------|-------------|--------------|-------------------|-----------|-------------------|-----------------|-------------|-------|--------------| | | | ate Street | | | rking Lo | | | | | | | th Ave | | _ | | | Interval | Right | Thru
0 | Left | Right
0 | Thru | Left
0 | Rig | ht I | Γ <u>hru</u>
Ο | Left
0 | Righ
(| | | 2 | <u>Total</u> | | 1:30 PM
1:45 PM | 1 2 | 0 | 0 | 0 | 3 | 0 | | 0 | 0 | 0 | (| | 1 :
3 | | 7
7 | | 2:00 PM | 3 | 0 | 1 | 2 | 6 | 0 | | 0 | 0 | 0 | (| | | | 13 | | 2:15 PM | 3 | 0 | 0 | 0 | 5 | 0 | | 0 | 0 | 0 | (| | 2 | | 11 | | 2:30 PM | 3 | 0 | 1 | 2 | 1 | 0 | | 0 | 0 | 0 | (| | 4 | | 12 | | 2:45 PM | 6 | 0 | 8 | 1 | 7 | 0 | | 0 | 0 | 0 | (| | | 3 | 41 | | 3:00 PM | 9 | 0 | 1 | 43 | 38 | 0 | | 0 | 0 | 0 | (|) 3 | 0 10 | | 131 | | 3:15 PM | 8 | 0 | 1 | 17 | 69 | 0 | | 0 | 0 | 0 | (|) 2 | 7 4 | 1 | 126 | | 3:30 PM | 1 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | (|) | 1 (| o | 2 | | Totals | 36 | 0 | 12 | 65 | 130 | 0 | | 0 | 0 | 0 | (|) 8 | 5 2 | 2 | 350 | | Entering | | 48 | | | 195 | | | C |) | | | 107 | | | | | Exiting | | 0 | | | 166 | | | 8 | 7 | | | 97 | | | | | | North | Fo | ct | Sout | h | Most | | Total | | | | | | | | | Pedestrians | 0 | <u>Ea</u> | | <u>3001</u> | <u></u> | West
0 | | <u>10tai</u> | | | | | | | | | i cucsti turis | Ü | | , | Ü | | Ü | | J | | | | | | | | | Vehicle Totals | - | | | _ | | | | | | | | | | _ | | | Car | 36 | 0 | 12 | 65 | 130 | 0 | | 0 | 0 | 0 | (| 8 | | | 347 | | | 100% | | 100% | 100% | 100% | | | | | | | 97.69 | | + | 0.1% | | SU | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | (| 2.49 | 2
% 4.5% | · I | 3
).9% | | | • | | | | Da ala III | | 00 DM | 2.20 | DM | | | | | • | | | | • | | | | Реак н | our: 2: | 30 PIVI | - 3:30 | PIVI | 1 | | | | | | | | | uthbound | | | estbound | | | North | oound | | | Eastbou | | | | | | | i te Street
Thru Le | | | rking Lo ^r
Thru L | | Right | Thru | Left | | <i>t</i>
Right | th Aver
Thru | nue
Left | Total | | | Totals | 26 C | | | | 115 0 | | Rigiit
O | 0 | 0 | | nigiii
0 | 77 | 18 | 310 | | | Factor | 0.72 - | | | |).42 - | | - | - | - | | - | 0.64 | 0.45 | 0.59 | | | 1 40101 | 0.72 | 0 | 5 1 | 0.07 |). IZ | | | | | | | 0.01 | 0.10 | 0.07 | | | Entering | | 37 | | | 178 | | | C | ` | | | 95 | | | | | Factor | | 0.66 | | | 0.52 | | | C | , | | | 0.59 | | | | | | | 0.00 | | | 0.52 | | | | | | | 0.54 | | | | | Exiting | | 0 | | | 141 | | | 8 | 1 | | | 88 | | | | | Factor | | J | | | 0.46 | | | 0.3 | | | | 0.71 | | | | | | | _ | | | | | ' | | | ļ | | | | • | | | Dadaskiisis | <u>North</u> | <u>Ea</u> | | Sout | <u>h</u> | <u>West</u> | | <u>Total</u> | | | | | | | | | Pedestrians | 0 | C | J | 0 | | 0 | | 0 | | | | | | | | | Peak Vehicles | ē | | | - | | | | | | | | | | | | | Car | 26 | 0 | 11 | 63 | 115 | 0 | | 0 | 0 | 0 | (| 7 | | | 308 | | | 100% | <u> </u> | 100% | 100% | 100% | | | | | Ŭ | | 97.49 | | 99 | 0.4% | | SU | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | (| 2.69 | 2 | | 2
).6% | | | <u> </u> | | | | | | <u> </u> | | | | | 2.07 | 0 | 1 | 7.070 | | · Vice | North | | | State Street | O
To
3 | ctor
.66
otal
37
0 11 | | factor
0.38 | | | | | |--------|----------------|------------|-----|--------------|--------------|-----------------------------------|-----------------|--------------------|---|----------------|------------|----------------| | | 6th | Avenue | | | 0 | 0 | | 0 | | | Parking l | _ot | | | Factor
0.46 | \Diamond | 141 | 0 | | Peak Sta
2:30 PM | | | 0 | | 63
115 | Total
178 | | • | Total
95 | 18 | Ŷ | 0 | | Volume
310 | • | | 0 | , | 0 | Factor
0.52 | | | Factor
0.59 | 77
0 | | 0 | | Factor
0.59 | | | 0 | 88 | \Diamond | Factor
0.71 | | | | | | | 0 | 0 | | 0 | | | | | | | | | | | Ů | 0 | 0
Total
0 | \Diamond \circ | | | | | ## **Appendix B** ## ITE Trip Generation ### Land Use: 530 High School #### Description High schools serve students who have completed middle or junior high school. Both public and private high schools are included in this land use. Elementary school (Land Use 520), middle school/junior high school (Land Use 522), private school—K–8 (Land Use 534) and private school—K–12 (Land Use 536) are related uses. #### **Additional Data** The trip generation for weekend time periods varied considerably; therefore, caution should be used when applying weekend statistics. Information describing the weekend activities conducted at the high schools was
not available. Average weekday transit trip ends- The percentage of the students at the sites who were transported to school via bus varied considerably. Due to the varied transit and school bus usage at these sites, it is desirable that future studies include additional detail on the percentage of students that were bussed to school and the percentage that were dropped off and picked up. The populations served and the social and economic characteristics of the areas surveyed varied considerably. The high schools also exhibited significant variations in terms of facilities provided. Since the ratio of floor space to student population varied widely among the schools surveyed, the number of students may be a more reliable independent variable on which to establish trip generation rates. Peak hours of the generator— The weekday a.m. peak hour of the generator typically coincided with the peak hour of the adjacent street traffic; therefore, only one a.m. peak hour, which represents both the peak hour of the generator and the peak hour of the adjacent street traffic, is displayed. The weekday p.m. peak hour varied between 2:00 p.m. and 4:00 p.m. The sites were surveyed from the late 1960s to the 2000s throughout the United States. Many of the studies included in this land use did not indicate if the schools were public or private. To assist in the future analysis of this land use, it is important that this information be collected and included in trip generation data submissions. #### **Source Numbers** 7, 10, 31, 33, 34, 40, 86, 91, 186, 293, 383, 409, 422, 444, 533, 536, 550, 564, 579 ## High School (530) Average Vehicle Trip Ends vs: Students On a: Weekday, A.M. Peak Hour Number of Studies: 62 Average Number of Students: 1,290 Directional Distribution: 69% entering, 31% exiting #### **Trip Generation per Student** | Average Rate | Range of Rates | Standard Deviation | |--------------|----------------|--------------------| | 0.41 | 0.14 - 1.15 | 0.67 | #### **Data Plot and Equation** ## High School (530) Average Vehicle Trip Ends vs: Students On a: Weekday, P.M. Peak Hour of Generator Number of Studies: 62 Average Number of Students: 1,290 Directional Distribution: 32% entering, 68% exiting #### **Trip Generation per Student** | Average Rate | Range of Rates | Standard Deviation | |--------------|----------------|--------------------| | 0.28 | 0.10 - 0.74 | 0.54 | ## **Data Plot and Equation** ## **Appendix C** # Level of Service Analysis This TWSC text report was created on 06/01/2016 16:58:15 HCS 2010 Two Way Stop Intersections Release 6.70 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hr: | Cc
EE
5/
AM
EA
20
EA
U.
Ea
5t | ırrent Tra
ollette Fr | ohlich
r
ion
ary
eway 1 | TROL (TWS0 | c) Anal ys | i s | | | | |--|--|--------------------------|-------------------------------------|---------------|---------------|---------------|---------------|----------------|----------| | Major Street: | | Vehi cl | e Volumes | and Adju | stments_ | | | | | | Approach
Movement | 1U | EastBour
1 | nd
2 | 3 | I | 4U | WestBou
4 | nd
5 | 6 | | MOVEMENT | Ü | Ĺ | T | R | | Ü | Ĺ | Ť | R | | Volume | | | 287 | 128 | 0.00 | | 129 | 185 | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | | 346 | 154 | 0. 83 | | 155 | 223 | | | Percent Heavy Vehicles
Number of Lanes | 0 | 0 | 1 | 0 | | 0 | 1
1 | 1 | 0 | | Lane Configuration
Median Type | | | | TR | Undi vi de | ed | L | T | | | Median Storage
RT channelized? | | | | No | | | | | No | | Left-Turn Lane Storage
Upstream Signal? | | | | 110 | Not Pre | cont | 5 | | 110 | | | | | | | | | | | | | Minor street:
Approach | | NorthBou | | | | | SouthBo | | 10 | | Movement | | 7
L | 8
T | 9
R | | | 10
L | 11
T | 12
R | | Vol ume | | 92 | | 40 | | | | | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | 111 | | 48 | 0. 83 | | | | | | Percent Heavy Vehicles
Number of Lanes | | 1 | 0 | 3 | | | 0 | 0 | 0 | | Lane Configuration | | Ĺ | O | R | | | O | O | No | | RT channelized?
Flared Approach/Storage | | No | / | No | | | No | / | NO | | Percent Grade | | | 0 | | | | | | | | Annroach | | Pedestr | ian Volum | nes and Ad | | s | NB | | SB | | Approach
Movement | | | EB
13 | | WB
14 | | 15 | | 3B
16 | | Flow (ped/hr) | | | 131 | | 131 | | 79 | | 0 | | Lane Width (ft)
Walking Speed (ft/sec) | | | 12. 0
3. 5 | | 12. 0
3. 5 | | 12. 0
3. 5 | | | | Pedestřian Blockage Facto | or, f(pb) | | 0. 098 | | 0. 001 | | 0. 004 | | | | | De | elay, Queu | e Length, | and Leve | el of Serv | vi ce | | | | | Approach EB
Movement 1U | 1 | WB
4U | 4 | 7 | thBound
8 | 9 | So
10 | uthBound
11 | 12 | | Lane Config. | | | L | L | | R | | | | | Flow Rate
Lane Capacity | | | 155
985 | 111
162 | | 48
475 | | | | | v/c
95% Queue Leng. | | | 0. 16
0. 6 | 0. 69
4. 0 | | 0. 10
0. 3 | | | | | Control Delay | | | 9. 3 | 65.8 | | 13. 4 | | | | | LOS
Approach Delay | | | A
3. 8 | F | <u>5</u> 0. 0 | В | | | | | Approach LOS
Intersct. Delay | 9. 1 | | Α | | E | | | | | | , and the second | | . | 4 1401/5 | MENT DOLG | N TI 50 | | | | | | | | step | 1: MOVEN | IENI PRIU | a iies | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | |--|-----------|-------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|-------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | Southl
10
L | Bound
11
T | 12
R | | Maj or Street: | Step | | | ND VOLUME | S AND FLO | N RATES | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 287
346 | 128
154 | | | 129
155 | 185
223 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | Southl
10
L | Bound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 92
111 | | 40
48 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING FL | _OW RATES | | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Flow Rate, v(x)
Conflicting Flow,v(c,x) | | | 346 | 154 | | | 155
579 | 223 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | Southl
10
L | Bound
11
T | 12
R | | Flow Rate, v(x) Conflicting Flow, v(c,x) | | 111
1166 | | 48
633 | | | | | | | | Step | 4: CRITI | CAL HEADW | AYS and F | FOLLOW-UP | HEADWAYS_ | | | | | CRITICAL HEADWAYS
Approach EB | | WB | | | orthBound | | | SouthBound | | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(c, base) Single Stage Stage I Stage II t(c, HV) | | | 4. 1 | 7. 1 | | 6. 2 | | | | | P(HV)
t(c,G) | | | 0. 01
0. 0 | 0. 01
0. 2 | | 0. 03
0. 1 | | | | | G
t(3, LT)
t(c)
Single Stage
Stage I | | | 0
0. 0
4. 13 | 0
0. 7
6. 43 | | 0
0. 0
6. 23 | | | | | Stage II | | | | | | | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f, base)
t(f, HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 01
2. 23
| 3. 5
0. 9
0. 01
3. 53 | | 3. 3
0. 9
0. 03
3. 33 | | | | | NO LIDSTDEAM SLOWAL FEFE | C DDECENT | Ste | 5: P0TE | NTIAL CAF | PACITIES | | | | | | NO UPSTREAM SIGNAL EFFECT
Approach EB
Movement 1U
U | 1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | v(c, x) | | | 579 | 1166 | | 633 | | | | | t(c, x) | 4. 13 | 6. 43 | 6. 23 | |-------------------------------|-------|-------|-------| | t(c, x)
t(f, x)
c(p, x) | 2. 23 | 3. 53 | 3. 33 | | c(p, x) | 989 | 213 | 478 | | ### Approach EB | Pedestri an Impedance | steps 6 - 9: MO | VEMENT CAPACITIES | | | |--|--|-----------------|----------------------|--------------------------------|----------| | ane Width, walking speed, S(p) alking a | pproach | | | | SB
16 | | aj or-Street Left-Turn Movement a) or-Street Left-Turn Movement a) or-Street Left-Turn Movement a) or-Street Left-Turn Movement b) operation (apacity, c(p, x) operation (apacity, c(p, x) operation) coment (apacity, c(p, x) operation) coment (apacity, c(p, x) operation) confilicting Flow, v(c, x) confi | ane Width, w
alking Speed, S(p) | 12. 0
3. 5 | 12. 0
3. 5 | 12. 0
3. 5 | 0 | | onfileting Flow, v(c, x) oriential Capacity, c(p, x) destrial impedance Factor, p(p, x) offileting Flow, v(c, x) considering flow, v(c, x) oriential Capacity, c(p, x) considering flow, v(c, x) oriential Capacity, c(p, x) destrial impedance Factor, p(p, x) oriential Capacity, c(p, x) destrial impedance Factor, p(p, x) oriential Capacity, c(p, x) destrial impedance Factor, p(p, x) oriential Capacity, c(p, x) destrial impedance Factor, p(p, x) oriential Capacity, c(p, x) oriential Capacity, c(m, x) inor-Street U-turn Movement oriential Capacity, c(m, x) c(p, x) oriential Capacity, c(p, x) oriential Capacity, c(m, ori | | 0.098 | | | | | otential Capacity, c(p, x) evenent Capacity, c(p, x) evenent Capacity, c(p, x) evenent Capacity, c(m, x) robability of Queue-Free State, p(0,j) officing Flow, v(c, x) otential Capacity, c(p, x) evenent evenen | | | | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) destrian impedance Factor, p(p,x) apacity Adjustment Factor, p(p,x) apacity Adjustment Factor, p(p,x) apacity C(m,x) apacity C(m,x) apacity C(m,x) apacity Adjustment Factor, p(p,x) Adjus | otential Čapacity, c(p,x)
edestrian Impedance Factor, p(p,x
ovement Capacity, c(m,x)
robability of Queue-free State, p | (0, j) | | 989
0. 996
985
0. 843 | | | otential Capacity, C(p, x) edestrian Impedance Factor, p(p, x) ovement Capacity, C(m, x) ajor-Street U-turn Movement by ajor-Street U-turn Movement ajor-Street U-turn Movement ajor-Street U-turn Movement ajor-Street U-turn Movement by ajor-Street U-turn Movement alor-Street U-turn Movement alor-Street Life Capacity, C(m, x) bereal Life Capacity, C(m, x) bereal Life Capacity, C(p, x) detestrian Impedance Factor, p(p, x) ajor-Street Left-Turn Movement alor-Street Life Life Life Life Life Life Life Life | inor-Street Right-Turn Movement | | 9 | 12 | | | Conflicting Flow, v(c,x) Control | Potential Čapacity, c(p,x)
Pedestrian Impedance Factor, p(p,x
Movement Capacity, c(m,x) | | 478
0. 995
475 | | | | Total Capacity (Cip. x) (| ajor-Street U-turn Movement | | 10 | 4U | | | Conficing Flow, v(c, x) Potential Capacity, c(p, Potentia | Potential Čapacity, c(p,x)
Capacity Adjustment Factor, f(x)
Movement Capacity, c(m,x)
Shared L/U Capacity, c(SH) | o(0, j) | | | | | Otential Capacity, C(p, x) redestrian Impedance Factor, p(p, x) redestrian Impedance Factor, p(p, x) reducibility of Queue-free State, p(0,j) | inor-Street Through Movement | | 8 | 11 | | | Conflicting Flow, v(c, x) Potential Capacity, c(p, Capacity | Potential Čapacity, c(p,x)
Pedestrian Impedance Factor, p(p,x
Capacity Adjustment Factor, f(x)
Movement Capacity, c(m,x) | | | | | | Step 11: Control Delay | inor-Street Left-Turn Movement | | 7 | 10 | | | Step 11: CONTROL DELAY CON | Potential Capacity, c(p,x)
Pedestrian Impedance Factor, p(p,x
Major L, Minor T Adj. Imp. Factor,
Major L, Minor T Impedance Factor, | p" | 213
0. 898 | | | | CONTROL DELAY TO RANK 2 THROUGH 4 MOVEMENTS MOVEMENT 2 THROUGH 4 MOVEMENT CONTROL DELAY 2 THROUGH 4 MOVEMENT CONTROL DELAY 2 THROUGH 4 MO | lapacity Adjustment Factor, 1(p,1) Novement Capacity, c(m,x) | | | | | | Steps 12 - 13: APPROACH/INTERSECTION CONTROL DELAY and povement Delay | ONTDOL DELAY TO DANK O TUDOUCU 4 | | ONTROL DELAY | | | | Movement Cap. | Approach EB
Movement 1U 1 | WB
4U 4 | 7 8 | 9 10 11 | | | Approach EB WB NorthBound SouthBound Movement 1U 1 4U 4 7 8 9 10 11 | Movement Cap.
∟ane Config.
Shared Cap. | 985
L
985 | 162
L
162 | 475
R
475 | | | Novement 1U 1 4U 4 7 8 9 10 11 Lane Config. Flow Rate Lane Capacity 985 162 475 17/C 0.16 0.69 0.10 95% Queue Leng. 0.6 4.0 0.3 | | | | | | | Anne Capacity 985 162 475 1/C 0.16 0.69 0.10 1/5% Queue Leng. 0.6 4.0 0.3 | lovement 1U 1 | 4U 4 | 7 8 | 9 10 11 | | | 95% Queue Leng. 0.6 4.0 0.3 | ane Capacity
//c | 985 | 162
0. 69 | 475
0. 10 | | | 7. 3 03. 0 13. 4 | 95% Queue Leng.
Control Delay | | 4. 0
65. 8 | 0. 3
13. 4 | | 9. 1 A F 3.8 A 50. 0 E В This TWSC text report was created on 06/01/2016 17:00:48 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs) | Col
EEI
5/2
PM
EAS
20'
EAI
U.S
EAS
5th
Tor | rent Tra
lette From
24/2016
Peak Hou
SD #131
16
HS Expans
S. Custom
HS - Drive
St-West
n Avenue | ffic - PN
ohlich
r
ion
ary | ROL (TWSC
1 Peak Hou | c) Analys | i s | | | | |---|--|---|--|-------------------------|----------------------|---------------|---------------|----------|----------| | Major Street: | | | | and Adju | istments_ | | | | | | Approach
Movement | 1U | EastBoun
1 | 2 | 3 | | 4U | WestBou
4 | 5 | 6 | | | U
 | L | Т | R | | U | L | Т | R
 | | Volume
Peak Hour Factor, PHF | | | 246 | 58 | 0. 88 | | 81 | 226 | | | Hourly Flow Rate, HFR
Percent Heavy Vehicles | | | 280 | 66 | | | 92
5 | 257 | | | Number of Lanes
Lane Configuration | 0 | 0 | 1 | O
TR | | 0 | 1
L | 1
T | 0 | | Median Type
Median Storage | | | | | Undi vi d | ed | | | | | RT channelized?
Left-Turn Lane Storage | | | | No | | | 5 | | No | | Upstream Signal? | | | | | Not Pre | sent
 | | | | | Minor street:
Approach | | NorthBou | | 0 | 1 | | SouthBo | | 10 | | Movement | | 7
L | 8
T | 9
R | | | 10
L | 11
T | 12
R | | Volume
Peak Hour Factor, PHF | | 67 | | 57 | 0.00 | | | | | | Hourly Flow Rate, HFR | | 76 | | 65 | 0. 88 | | | | | | Percent Heavy Vehicles Number of Lanes | | 2 | 0 | 7
1 | | | 0 | 0 | 0 | | Lane Configuration RT channelized? | | L | , | R
No | | | No | , | No | | Flared Approach/Storage
Percent Grade | | No | 0 | | | | No | / | | | | | Pedestr | ian Volum | nes and Ad | ljustment | S | | | | | Approach
Movement | | | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Flow (ped/hr) | | | 70 | | 70 | | 163 | | 0 | | Lane Width (ft)
Walking Speed (ft/sec) | | | 12. 0
3. 5 | | 12.
0
3. 5 | | 12. 0
3. 5 | | | | Pedestřian Blockage Factor | r, f(pb) | | 0. 011 | | 0. 195 | | 0. 086 | | | | Approach EB | Del | ay, Queu
WB | e Length, | | el of Ser
thBound | vi ce | \$0 | uthBound | | | Movement 1U
Lane Config. | 1 | 4U WB | 4
L | 7
L | 8 | 9
R | 10 | 11 | 12 | | Flow Rate
Lane Capacity | | | 92
954 | 76
224 | | 65
389 | | | | | v/c
95% Queue Leng. | | | 0. 10
0. 3 | 0. 34
1. 4 | | 0. 17
0. 6 | | | | | Control Delay | | | 9. 2
A | 29. 1
D | | 16. 1
C | | | | | Approach Delay
Approach LOS | | | 2. 4
A | J | 23. 1
C | J | | | | | Interset. Delay | 4. 9 | | ,, | | J | | | | | | | | Step | 1: MOVEN | IENT PRIOF | RI TI ES | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | |---|----------------------|-------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Maj or Street: | Step | | | ND VOLUME | ES AND FLO | W RATES | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestB
4
L | ound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 246
280 | 58
66 | | | 81
92 | 226
257 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 67
76 | | 57
65 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING FL | _OW RATES_ | | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestB
4
L | ound
5
T | 6
R | | Flow Rate, v(x) Conflicting Flow, v(c, x) | | | 280 | 66 | | | 92
509 | 257 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 76
987 | | 65
546 | | | | | | | | Step | 4: CRITIO | CAL HEADW | /AYS and F | FOLLOW-UP | HEADWAYS_ | | | | | CRITICAL HEADWAYS
Approach EB | | WB | | | orthBound | | | SouthBound | | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(c, base) Single Stage Stage Stage t(c, HV) P(HV) | | | 4. 1
1. 0
0. 05 | 7. 1
1. 0
0. 02 | | 6. 2
1. 0
0. 07 | | | | | t(c, G)
G | | | 0.00 | 0. 2
0 | | 0. 1
0. 1 | | | | | t(3, LT)
t(c)
Single Stage
Stage I
Stage II | | | 0. 0
4. 15 | 0. 7
6. 42 | | 0. 0
6. 27 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f,base)
t(f,HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 05
2. 24 | 3. 5
0. 9
0. 02
3. 52 | | 3. 3
0. 9
0. 07
3. 36 | | | | | NO LIDCTDEAM CLONAL EFFECT | TO DDECENS | Step | 5: P0TE | NTIAL CAF | PACITIES | | | | | | NO UPSTREAM SIGNAL EFFECTApproach EB Movement 1U U | IS PRESENT
1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | v(c, x) | | | 509 | 987 | | 546 | | | | | t(c, x)
t(f, x)
c(p, x) | 2. 24 3 | . 42 6.
. 52 3.
74 52 | 36 | | |--|-------------------------------|---------------------------------------|---|----------| | Ster | os 6 - 9: MOVEMI | ENT CAPACITIES | | | | Pedestrian Impedance
Approach
Movement | EB
13 | WB
14 | NB
15 | SB
16 | | Pedestrian Flow Rate, v(x)
Lane Width, w
Walking Speed, S(p)
Pedestrian Blockage Factor, f(pb) | 70
12. 0
3. 5
0. 011 | 70
12. 0
3. 5
0. 195 | 163
12. 0
3. 5
0. 086 | 0 | | Major-Street Left-Turn Movement | | 1 | 4 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) Major L-Shared Prob. Q-free St., p*(0,j) |) | | 509
1043
0.914
954
0.904
0.904 | | | Minor-Street Right-Turn Movement | | 9 | 12 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | 546
528
0. 736
389
0. 833 | | | | Major-Street U-turn Movement | | 10 | 4U | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Shared L/U Capacity, c(SH) Probability of Queue-free State, p(0,j) | | | | | | Minor-Street Through Movement | | 8 | 11 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | | | | | Minor-Street Left-Turn Movement | | 7 | 10 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) | | 987
274 | | ····· | | Minor-Street Left-Turn Movement | 7 | 10 | | |---------------------------------------|--------|----|--| | Conflicting Flow, v(c,x) | 987 | | | | Potential Čapacity, c(p,x) | 274 | | | | Pedestrian Impedance Factor, p(p,x) | 0. 904 | | | | Major L, Minor T Adj. Imp. Factor, p" | | | | | Major L, Minor T Impedance Factor, p' | | | | | Capacity Adjustment Factor, f(p, I) | 0. 904 | | | | Movement Capacity, c(m,x) | 224 | | | | | | | Step 11: | CONTROL | DELAY | | | | | | |----------|-----------|-----------|-------------------------------------|--|--|--|--|---------------------------------|---|--| | O RANK 2 | THROUGH 4 | 4 MOVEMEN | TS · | | | | | | | | | E | В | WI | 3 | | NorthBound | | • | SouthBoun | d | | | 1U | 1 | 4U | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | U | L | U | L | L | T | R | L | T | R | | | | | | | | | | | | | _ | | | | | 92 | 76 | | 65 | | | | | | | | | 954 | 224 | | 389 | | | | | | | | | L | L | | R | | | | | | | | | 954 | 224 | | 389 | | | | | | | | | 9. 2 | 29. 1 | | 16. 1 | | | | | | | E | EB | O RANK 2 THROUGH 4 MOVEMEN
EB WE | TO RANK 2 THROUGH 4 MOVEMENTS ' EB WB 1U 1 4U 4 U L 92 954 L 954 | TO RANK 2 THROUGH 4 MOVEMENTS BEB WB 1U 1 4U 4 7 U L L 92 76 954 224 L 954 224 | EB WB NorthBound 1U 1 4U 4 7 8 U L U L T 92 76 954 224 L L 954 224 | TO RANK 2 THROUGH 4 MOVEMENTS WB NorthBound 1U 1 4U 4 7 8 9 U L U L T R 92 76 65 954 224 389 L L R 954 224 389 | RANK 2 THROUGH 4 MOVEMENTS ' EB | TO RANK 2 THROUGH 4 MOVEMENTS BB WB NorthBound SouthBound 1U 1 4U 4 7 8 9 10 11 U L U L T R L T 92 76 65 954 224 389 L L R 954 224 389 | TO RANK 2 THROUGH 4 MOVEMENTS SouthBound | | Approach
Movement
Lane Config. | 12 - 13:
EB
1 | APPROACH/I
WE
4U | | | L DELAY and
lorthBound
8 | 95%
9
R | QUEUE LENGTHSSouthBound
10 11 | 12 | |---|---------------------|------------------------|------------------------------------
-------------------------------------|--------------------------------|-------------------------------------|----------------------------------|----| | Flow Rate
Lane Capacity
v/c
95% Queue Leng.
Control Delay | | | 92
954
0. 10
0. 3
9. 2 | 76
224
0. 34
1. 4
29. 1 | | 65
389
0. 17
0. 6
16. 1 | | | 4. 9 A 2. 4 A С 23. 1 C This TWSC text report was created on 06/01/2016 16:58:55 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs | CC
EF
5,
AM
E/
20
E/
U.
E2
51 | uture Traf
ollette Fr | ohlich
r
ion
ary
eway 1 | FROL (TWS0
Peak Houi | 2) Analys | si s | | | | |--|--|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------|-------------------------------------|-------------------------------|-----------------|----------| | Major Street: | | | e Volumes | and Adj | ustments_ | | | | | | Approach
Movement | 1U | EastBour
1 | 2 | 3 | I | 4U | WestBo
4 | 5 | 6 | | | U
 | | T | R | | U
 | L | T | R
 | | Volume Peak Hour Factor, PHF Hourly Flow Rate, HFR Percent Heavy Vehicles | | | 342
412 | 150
181 | 0. 83 | | 152
183 | 213
257 | | | Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | O
TR | Undi vi d | 0
led | 1
1
L | 1
T | 0 | | Median Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | Not Pre | esent | 3 | | No | | Minor street:
Approach
Movement | | NorthBoo
7
L | und
8
T | 9
R | | | SouthBo
10
L | ound
11
T | 12
R | | Volume Peak Hour Factor, PHF Hourly Flow Rate, HFR Percent Heavy Vehicles Number of Lanes Lane Configuration RT channelized? Flared Approach/Storage Percent Grade | | 105
127
1
1
L
No | 0 / 0 | 45
54
3
1
R
No | 0. 83 | | O
No | 0 | O
No | | Approach | | Pedestr | ian Volum | nes and A | | :S | NB | | CD. | | Approach
Movement | | | EB
13 | | WB
14 | | 15 | | SB
16 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Facto | or, f(pb) | | 152
12.0
3.5
0.098 | | 152
12. 0
3. 5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | Approach EB
Movement 1U
Lane Config. | De | elay, Queu
WB
4U | e Length,
4
L | and Leve
No
7
L | el of Ser
rthBound
8 | vi ce
9
R | 10 | outhBound
11 | 12 | | Flow Rate
Lane Capacity
v/c
95% Queue Leng.
Control Delay | | | 183
900
0. 20
0. 8
10. 0 | 127
115
1. 10
7. 7
185. 9 | | 54
410
0. 13
0. 5
15. 1 | | | | | LOS
Approach Delay
Approach LOS
Intersct. Delay | 21. 6 | | B
4. 2
A | F | 134. 9
F | С | | | | | | | Step | 1: MOVEM | MENT PRIO | RI TI ES | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestE
4
L | Bound
5
T | 6
R | |--|----------------------|-------------------|--------------------------------|--------------------------------|----------------------|--------------------------------|------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | nBound
11
T | 12
R | | Major Street: | Step | | | ND VOLU | MES AND FLO | V RATES_ | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestE
4
L | Bound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 342
412 | 150
181 | | | 152
183 | 213
257 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | nBound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 105
127 | | 45
54 | | | | | | | | | Step | 3: CONFL | I CTI NG | FLOW RATES | | | | | | Major Street:
Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestE
4
L | Bound
5
T | 6
R | | Flow Rate, v(x)
Conflicting Flow,v(c,x) | | | 412 | 181 | | | 183
684 | 257 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | nBound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 127
1368 | | 54
746 | | | | | | | | Step | 4: CRITIO | CAL HEADW | AYS and | FOLLOW-UP I | HEADWAYS. | | | | | CRITICAL HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | 7
L | NorthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, base)
Single Stage
Stage I
Stage II | | | 4. 1 | 7. 1 | | 6. 2 | | | | | t(c,HV)
P(HV)
t(c,G)
G | | | 1. 0
0. 01
0. 0
0 | 1. 0
0. 01
0. 2
0 | | 1. 0
0. 03
0. 1
0 | | | | | t(3, LT)
t(c)
Single Stage
Stage I
Stage II | | | 0. 0
4. 13 | 0. 7
6. 43 | | 0. 0
6. 23 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | 7
L | NorthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f, base)
t(f, HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 01
2. 23 | 3. 5
0. 9
0. 01
3. 53 | | 3. 3
0. 9
0. 03
3. 33 | | | | | NO LIDCTDEAM CLONAL EFFECT | C DDECEVE | Step | 5: P0TE | NTIAL C | APACITIES | | | | | | NO UPSTREAM SIGNAL EFFECT
Approach EB
Movement 1U
U | TS PRESENT
1
L | WB
4U
U | 4
L | 7
L | NorthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | v(c, x) | | | 684 | 1368 | | 746 | | | | | t(c, x) | 4. 13 | 6. 43 | 6. 23 | |---------|-------|-------|-------| | t(f, x) | 2. 23 | 3. 53 | 3. 33 | | c(p, x) | 904 | 161 | 412 | | edestrian Impedance | 7. move | MENT CAPACITIES | | | |---|--------------------------------|---------------------------------------|---|----------| | pproach
ovement | EB
13 | WB
14 | NB
15 | SB
16 | | edestrian Flow Rate, v(x)
ane Width, w
alking Speed, S(p)
edestrian Blockage Factor, f(pb) | 152
12. 0
3. 5
0. 098 | 152
12.0
3.5
0.001 | 91
12.0
3.5
0.004 | 0 | | jor-Street Left-Turn Movement | | 1 | 4 | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) ovement Capacity, c(m,x) robability of Queue-free State, p(0, ajor L-Shared Prob. Q-free St., p*(0 | j)
),j) | | 684
904
0. 996
900
0. 797
0. 797 | | | nor-Street Right-Turn Movement | | 9 | 12 | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) ovement Capacity, c(m,x) robability of Queue-free State, p(0, | j) | 746
412
0. 995
410
0. 868 | | | | ajor-Street U-turn Movement | | 10 | 4U | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) apacity Adjustment Factor, f(x) ovement Capacity, c(m,x) nared L/U Capacity, c(SH) robability of Queue-free State, p(0, | j) | | | | | nor-Street Through Movement | | 8 | 11 | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) apacity Adjustment Factor, f(x) ovement Capacity, c(m,x) robability of Queue-free State, p(0, | j) | | | | | nor-Street Left-Turn Movement | | 7 | 10 | | | onflicting Flow, v(c,x)
otential Capacity, c(p,x)
edestrian Impedance Factor, p(p,x)
ajor L, Minor T Adj. Imp. Factor, p"
ajor L, Minor T Impedance Factor, p' | | 1368
161
0. 898 | | | | apacity Adjustment Factor, f(p,l) by ement Capacity, c(m,x) | | 0. 797
115 | | | | | Step 11: CON | TROL DELAY | | | | ONTROL DELAY TO RANK 2 THROUGH 4 MON
oproach EB
ovement 1U 1 4
U L U | /EMENTS ·
WB
U 4 | NorthBound 7 8 9 L T R | | | | ow Rate
ovement Cap.
ane Config.
nared Cap.
ontrol Delay | 900
L
900 | 115 4
L R
115 4 | 10
10
10
5. 1 | | | Steps 12 - 13: APPROA | | | | | | oproach EB
ovement 1U 1 4
ane Config. | | NorthBound
7 8 9
L R | | | | ow Rate | | | 10 | | 21. 6 B 4. 2 A С 134. 9 F ### HCS 2010 TWSC Text Report This TWSC text report was created on 06/01/2016 17:01:08 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: Analysis Time Period (hrs | CC
EI
5,
P!
E,
20
E,
U.
E5
TC | uture Trat
ollette Fi | ur
sion
mary
veway 1 | ROL (TWS
Peak Hou | C) Analys | si s | | | | |---|--|--------------------------|-------------------------------|----------------------------|-------------------------------|----------------------------|--------------------------------|-----------------|----------| | Major Street: | | Vehi cl | e Volumes | and Adj | ustments_ | | | | | | Approach
Movement | 1U | EastBou
1 | nd
2 | 3 | I | 4U | WestBo | und
5 | 6 | | MOVEMENT | Ü | Ĺ | T | R
| | Ü | Ĺ | Ť | R | | Volume
Peak Hour Factor, PHF | | | 273 | 63 | 0. 88 | | 89 | 280 | | | Hourly Flow Rate, HFR Percent Heavy Vehicles | | | 310 | 72 | 0. 88 | | 101
5 | 318 | | | Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | O
TR | Undi vi d | 0
led | 1
L | 1
T | 0 | | Medi an Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | Not Pre | esent | 3 | | No | | Minor street: | | | | | | | | | | | Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | SouthB
10
L | ound
11
T | 12
R | | Volume
Peak Hour Factor, PHF | | 82 | | 69 | 0.00 | | | | | | Hourly Flow Rate, HFR | | 93 | | 78 | 0. 88 | | | | | | Percent Heavy Vehicles
Number of Lanes | | 2 | 0 | 7
1 | | | 0 | 0 | 0 | | Lane Configuration
RT channelized?
Flared Approach/Storage
Percent Grade | | L
No | /
0 | R
No | | | No | / | No | | | | Dodoot | | noc and a | di uo+mas+ | | | | | | Approach
Movement | | Peaesti | rian Volum
EB
13 | ies and A | WB
14 | .S | NB
15 | | SB
16 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Facto | or, f(pb) | | 80
12. 0
3. 5
0. 011 | | 80
12. 0
3. 5
0. 195 | | 189
12. 0
3. 5
0. 086 | | 0 | | | De | elay, Quei | ue Length, | | | vi ce | | | | | Approach EB Movement 1U Lane Config. | 1 | 4U WB | 4
L | | rthBound
8 | 9
R | 10 | outhBound
11 | 12 | | Flow Rate
Lane Capacity
v/c
95% Queue Leng. | | | 101
904
0. 11
0. 4 | 93
180
0. 52
2. 6 | | 78
355
0. 22
0. 8 | | | | | Control Delay LOS Approach Delay | | | 9. 5
A
2. 3 | 44. 8
E | 32. 5 | 18. 0
C | | | | | Approach LOS
Intersct. Delay | 6. 7 | | A | | D D | | | | | | | | Ste | o 1: MOVEN | MENT PRIO | RI TI ES | | | | | | | | | | | | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | |--|------------|-------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|-------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | Southl
10
L | Bound
11
T | 12
R | | Maj or Street: | Step | | | ND VOLUME | S AND FLO | W RATES | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 273
310 | 63
72 | | | 89
101 | 280
318 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | Southl
10
L | Bound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 82
93 | | 69
78 | | | | | | | Mail and Changet | | Step | 3: CONFL | ICTING FL | OW RATES_ | | | | | | Major Street:
Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Flow Rate, v(x)
Conflicting Flow,v(c,x) | | | 310 | 72 | | | 101
571 | 318 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | [| | Southl
10
L | Bound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 93
1135 | | 78
615 | | | | | | | | Step | 4: CRITIO | CAL HEADW | AYS and F | OLLOW-UP | HEADWAYS_ | | | | | CRITICAL HEADWAYS Approach EB | | WB | | | orthBound | | | SouthBound | 10 | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(c, base) Single Stage Stage Stage Stage t(c, HV) P(HV) t(c, G) | | | 4. 1
1. 0
0. 05
0. 0 | 7. 1
1. 0
0. 02
0. 2 | | 6. 2
1. 0
0. 07
0. 1 | | | | | t(3, LT) t(c) Single Stage Stage I Stage II | | | 0. 0
4. 15 | 0. 7
6. 42 | | 0. 0
6. 27 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f,base)
t(f,HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 05
2. 24 | 3. 5
0. 9
0. 02
3. 52 | | 3. 3
0. 9
0. 07
3. 36 | | | | | NO UPSTREAM SIGNAL EFFECT | C DDECENIT | Step | 5: POTE | NTIAL CAP | ACITIES | | | | | | Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | v(c, x) | | | 571 | 1135 | | 615 | | | | | t(c, x) | 4. 15 | 6. 42 | 6. 27 | |---------|-------|-------|-------| | t(f, x) | 2. 24 | 3. 52 | 3. 36 | | c(p, x) | 989 | 224 | 483 | | | | | | | Steps (| 6 - 9: MOVEME | NT CAPACITIES_ | | | | |--|---|--|--------------------------------|---|---------------------------------------| | Pedestrian Impedance
Approach
Movement | EB
13 | WB
14 | | NB
15 | SB
16 | | Pedestrian Flow Rate, v(x)
Lane Width, w | 80
12.0 | 80
12. 0 | | 189
12. 0 | 0 | | Walking Speed, S(p)
Pedestrian Blockage Factor, f(pb) | 3. 5
0. 011 | 3. 5
0. 195 | | 3. 5
0. 086 | | | Major-Street Left-Turn Movement | | 1 | | 4 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) Major L-Shared Prob. Q-free St., p*(0,j) | | | | 571
989
0. 914
904
0. 888
0. 888 | | | Minor-Street Right-Turn Movement | | 9 | | 12 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | 615
483
0. 736
355
0. 780 | | | | | Major-Street U-turn Movement | | 1U | | 4U | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Shared L/U Capacity, c(SH) Probability of Queue-free State, p(0,j) | | | | | | | Minor-Street Through Movement | | 8 | | 11 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | | | | | | Minor-Street Left-Turn Movement | | 7 | | 10 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Major L, Minor T Adj. Imp. Factor, p" Major L, Minor T Impedance Factor, p' Capacity Adjustment Factor, f(p,I) Movement Capacity, c(m,x) | | 1135
224
0. 904
0. 888
180 | | | | | S | tep 11: CONTR | OL DELAY | | | | | CONTROL DELAY TO RANK 2 THROUGH 4 MOVEMENTS Approach EB WB Movement 1U 1 4U U L U | S 4 7
L L | NorthBound
8
T | 9
R | South
10 11
L T | | | Flow Rate
Movement Cap.
Lane Config.
Shared Cap.
Control Delay | 101 93
904 18
L L
904 18
9.5 44 | 0 | 78
355
R
355
18. 0 | | | | Steps 12 - 13: APPROACH/IN | TERSECTION CO | | d 95% QUEL | | | | Approach EB WB Movement 1U 1 4U Lane Config. | 4 7
L L | NorthBound
8 | 9
R | South
10 11 | | | Flow Rate
Lane Capacity
v/c | 101 93
904 18
0. 11 0. | | 78
355
0. 22 | | · · · · · · · · · · · · · · · · · · · | | 95% Queue Leng.
Control Delay | 0.4 2. | | 0. 22
0. 8
18. 0 | | | A 2. 3 A E 32.5 D 6. 7 This TWSC text report was created on 06/01/2016 16:59:53 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs | CC
EI
5,
AI
E,
20
E,
U.
E5
TC | uture Trafollette Fr
El
/24/2016
M Peak Hou
ASD #131
D18
AHS Expans
S. Custom
AHS - Drivast-West
th Avenue
Dmcat Lane
25 | ohlich
ar
sion
aary
eway 1 | Peak Hou | r - 75% | | | | | |--|--|---|---|---------------------------------------|--------------------------------|--|-------------------------------|-----------------|----------| | Major Street:
Approach | | EastBou | | s and Auj | 23 tillerit3_ | | WestBou | ınd | | | Movement | 1U
U | 1
L | 2
T | 3
R | | 4U
U | 4
L | 5
T | 6
R | | Vol ume | | | 367 | 162 | | | 163 | 226 | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | | 442 | 195 | 0. 83 | | 196 | 272 | | | Percent Heavy Vehicles
Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | O
TR | Undi vi d | 0
ed | 1
1
L | 1
T | 0 | | Median Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | Not Pre | sent | 3 | | No | | Minor street: | | Nth D | | | | | C | | | | Approach
Movement | | NorthBo
7
L | una
8
T | 9
R | | | SouthBo
10
L | und
11
T | 12
R | | Volume
Peak Hour Factor, PHF | | 110 | | 48 | 0. 83 | | | | | | Hourly Flow Rate, HFR Percent Heavy Vehicles | | 133
1 | | 58
3 | 0.03 | | | | | | Number of Lanes
Lane
Configuration | | 1 | 0 | 1
R | | | 0 | 0 | 0 | | RT channelized? Flared Approach/Storage Percent Grade | | No | /
0 | No | | | No | / | No | | | | Pedestr | ian Volum | nes and A | djustment | S | | | | | Approach
Movement | | | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Facto | or, f(pb) | | 152
12. 0
3. 5
0. 098 | | 152
12. 0
3. 5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | Annuarah | De | elay, Queu | ie Length, | | | vi ce | | | | | Approach EB
Movement 1U
Lane Config. | 1 | WB
4U | 4
L | No
7
L | rthBound
8 | 9
R | 10 | outhBound
11 | 12 | | Flow Rate Lane Capacity v/c 95% Queue Leng. Control Delay LOS | | | 196
867
0. 23
0. 9
10. 4
B | 133
100
1. 33
9. 4
278. 0 | 100 4 | 58
391
0. 15
0. 5
15. 8
C | | | | | Approach Delay
Approach LOS
Intersct. Delay | 30. 8 | | 4. 3
A | | 198. 4
F | | | | | | , | | C+~~ | . 1. MOV/E | MENT DDIO | OI TI EC | | | | | | | | step | , I. WIOVEN | MENI FRIU | VITTES | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | |---|---------|-------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Maj or Street: | Step | | | AND VOLUME | ES AND FLO | W RATES | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 367
442 | 162
195 | | | 163
196 | 226
272 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 110
133 | | 48
58 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING FL | _OW RATES_ | | | | | | Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestBo
4
L | ound
5
T | 6
R | | Flow Rate, v(x)
Conflicting Flow,v(c,x) | | | 442 | 195 | | | 196
728 | 272 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 133
1446 | | 58
782 | | | | | | | | Step | 4: CRITIO | CAL HEADW | IAYS and F | FOLLOW-UP | HEADWAYS <u>.</u> | | | | | CRITICAL HEADWAYS Approach EB | | WB | | | orthBound | | | SouthBound | 10 | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(c, base) Single Stage Stage I Stage II t(c, HV) | | | 4. 1 | 7. 1 | | 6. 2 | | | | | P(HV)
t(c,G) | | | 0. 01
0. 0 | 0. 01
0. 2 | | 0. 03
0. 1 | | | | | G
t (3, LT) | | | 0
0. 0 | 0
0. 7 | | 0
0. 0 | | | | | t(c)
Single Stage
Stage I
Stage II | | | 4. 13 | 6. 43 | | 6. 23 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f, base)
t(f, HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 01
2. 23 | 3. 5
0. 9
0. 01
3. 53 | | 3. 3
0. 9
0. 03
3. 33 | | | | | | | Ste | 5: POTE | ENTIAL CAF | PACITIES | | | | | | NO UPSTREAM SIGNAL EFFEC
Approach EB | | T WB | | | orthBound | | (| SouthBound | | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | v(c, x) | | | 728 | 1446 | | 782 | | | | | t(c, x) | 4. 13 | 6. 43 | 6. 23 | |----------------------------------|-------|-------|-------| | t (c, x)
t (f, x)
c (p, x) | 2. 23 | 3. 53 | 3. 33 | | c(p, x) | 870 | 144 | 393 | | Steps | 6 - 9: MOVE | MENT CAPACITIES_ | | | | |--|-----------------|--|-------------------------------|---|----------| | Pedestrian Impedance
Approach
Movement | EB
13 | WB
14 | | NB
15 | SB
16 | | Pedestrian Flow Rate, v(x)
Lane Width, w | 152
12. 0 | 152
12. 0 | | 91
I2. 0 | 0 | | Walking Speed, S(p)
Pedestrian Blockage Factor, f(pb) | 3. 5
0. 098 | 3. 5
0. 001 | | 3. 5
). 004 | | | Major-Street Left-Turn Movement | | 1 | 4 | 1 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) Major L-Shared Prob. Q-free St., p*(0,j) | | | 8
8
0 | 728
370
). 996
367
). 774
). 774 | | | Minor-Street Right-Turn Movement | | 9 | 1 | 12 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | 782
393
0. 995
391
0. 852 | | | | | Major-Street U-turn Movement | | 1U | 4 | 1U | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Shared L/U Capacity, c(SH) Probability of Queue-free State, p(0,j) | | | | | | | Minor-Street Through Movement | | 8 | 1 | 11 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | | | | | | Minor-Street Left-Turn Movement | | 7 | 1 | 10 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Major L, Minor T Adj. Imp. Factor, p" Major L, Minor T Impedance Factor, p' Capacity Adjustment Factor, f(p,l) Movement Capacity, c(m,x) | | 1446
144
0. 898
0. 774
100 | | | | | S | step 11: CON | TROL DELAY | | | | | CONTROL DELAY TO RANK 2 THROUGH 4 MOVEMENT
Approach EB WB
Movement 1U 1 4U
U L U | 4 | NorthBound
7 8
L T | 9 1
R L | SouthBound
10 11
T | 12
R | | Flow Rate
Movement Cap.
Lane Config.
Shared Cap.
Control Delay | 867
L
867 | 133
100
L
100
278. 0 | 58
391
R
391
15.8 | | | | Steps 12 - 13: APPROACH/IN | ITERSECTI ON | | d 95% QUEUE | | | | Approach EB WB Movement 1U 1 4U Lane Config. | 4
L | NorthBound
7 8
L | 9 1
R | SouthBound
10 11 | 12 | | Flow Rate
Lane Capacity
v/c | 867 | 133
100
1. 33 | 58
391
0. 15 | | | | 95% Queue Leng.
Control Delay | 0. 9 | 9. 4
278. 0 | 0. 13
0. 5
15. 8 | | | B 4. 3 A F 198. 4 F С 30.8 This TWSC text report was created on 06/01/2016 17:01:42 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs | CC
EI
5,
Pl
E,
20
E,
U.
Es
5 | uture Trafollette FrEI /24/2016 W Peak Hou ASD #131 D18 AHS Expans S. Custon AHS - Driv ast-West th Avenue Dmcat Lane | rohlich
ur
sion
nary
veway 1 | Peak Hou | r - 75% | | | | | |--|---|---|--|---------------|---------------|---------------|---------------|-----------------|----------| | Major Street: | | | e Volumes | s and Adji | ustments_ | | Woot Po | und | | | Approach
Movement | 1U
U | EastBou
1 | 2
T | 3
R | | 4U
U | WestBo | 5
T | 6 | | Volume | U
 | | | | | | 92 | | R
 | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | | 285
324 | 66
75 | 0.88 | | 92
105 | 304
345 | | | Percent Heavy Vehicles Number of Lanes | 0 | 0 | 1 | 0 | | 0 | 5
1 | 1 | 0 | | Lane Configuration | U | U | ' | TR | Undi vi d | | Ĺ | τ̈́ | U | | Median Type
Median Storage
RT channelized? | | | | No | ondi vi c | ieu | | | No | | Left-Turn Lane Storage Upstream Signal? | | | | NO | Not Pre | sont | 3 | | NO | | Mi nor street: | | | | | NOL FIE | | | | | | Approach
Movement | | NorthBo
7 | und
8 | 9 | 1 | | SouthBo
10 | ound
11 | 12 | | Movement | | Ĺ | T | R | | | L | Ť' | R | | Volume
Peak Hour Factor, PHF | | 89 | | 76 | 0. 88 | | | | | | Hourly Flow Rate, HFR | | 101 | | 86
7 | 0. 66 | | | | | | Percent Heavy Vehicles Number of Lanes | | 2
1 | 0 | 1 | | | 0 | 0 | 0 | | Lane Configuration
RT channelized? | | L
N- | , | R
No | | | N = | , | No | | Flared Approach/Storage
Percent Grade | | No | 0 | | | | No | / | | | | | Pedestr | rian Volum | nes and A | diustment | :S | | | | | Approach
Movement | | | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Flow (ped/hr) | | | 80 | | 80 | | 189 | | 0 | | Lane Width (ft)
Walking Speed (ft/sec) | | | 12. 0
3. 5 | | 12. 0
3. 5 | | 12. 0
3. 5 | | J | | Pedestri an Blockage Facto | or, f(pb) | | 0. 011 | | 0. 195 | | 0. 086 | | | | | De | elay, Queu | ue Length, | | | vi ce | | | | | Approach EB Movement 1U Lane Config. | 1 | WB
4U | 4
L | No
7
L | rthBound
8 | 9
R | 10 | outhBound
11 | 12 | | Flow Rate
Lane Capacity | | |
105
891 | 101
166 | | 86
348 | | | | | v/c | | | 0. 12 | 0. 61
3. 3 | | 0. 25 | | | | | 95% Queue Leng.
Control Delay | | | 0. 4
9. 6 | 55. 5 | | 1. 0
18. 7 | | | | | LOS
Approach Delay | | | A
2. 2 | F | <u>3</u> 8. 6 | С | | | | | Approach LOS
Intersct. Delay | 7. 9 | | Α | | E | | | | | | | | Ster | o 1: MOVEN | MENT PRIN | RITLES | | | | | | | | | | | | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBo
1
L | ound
2
T | 3
R | | 4U
U | WestE
4
L | Bound
5
T | 6
R | |---|-----------|------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | 6.1 | NorthE
7
L | 8
T | 9
R | | W DATES | South
10
L | Bound
11
T | 12
R | | Major Street: | Ste | • | | AND VOLUM | ES AND FLO | W RAIES_ | | | | | Approach
Movement | 1U
U | EastBo
1
L | ound
2
T | 3
R | | 4U
U | WestE
4
L | Sound
5
T | 6
R | | Volume, $V(x)$
Flow Rate, $V(x)$ | | | 285
324 | 66
75 | | | 92
105 | 304
345 | | | Minor Street:
Approach
Movement | | NorthB
7
L | Sound
8
T | 9
R | | | South
10
L | nBound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 89
101 | | 76
86 | | | | | | | Major Street: | | Ste | p 3: CONF | LICTING F | LOW RATES_ | | | | | | Approach
Movement | 1U
U | EastBo
1
L | 2
T | 3
R | | 4U
U | WestE
4
L | 5
T | 6
R | | Flow Rate, v(x) Conflicting Flow, v(c, x) | | | 324 | 75 | | | 105
588 | 345 | | | Minor Street:
Approach
Movement | | NorthB
7
L | Sound
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Flow Rate, $v(x)$
Conflicting Flow, $v(c, x)$ |) | 101
1186 | | 86
630 | | | | | | | | Stei | n 4: CRIT | ICAL HEAD | WAYS and | FOLLOW-UP | HFADWAYS | | | | | CRITICAL HEADWAYS
Approach E | | WE | | | orthBound | | | SouthBound | | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(c, base)
Single Stage
Stage I
Stage II | | | 4. 1 | 7. 1 | | 6. 2 | | | | | t(c,HV)
P(HV)
t(c,G)
G | | | 1. 0
0. 05
0. 0
0 | 1. 0
0. 02
0. 2
0 | | 1. 0
0. 07
0. 1
0 | | | | | t(3, LT)
t(c)
Single Stage
Stage I
Stage II | | | 0. 0
4. 15 | 0. 7
6. 42 | | 0. 0
6. 27 | | | | | FOLLOW-UP HEADWAYS Approach |
3 | | | N | orthBound | | | SouthBound | | | Movement 1U
U | 1
L | 4U
U | 4
L | 7
L | 8
T | 9
R | 10
L | 11
T | 12
R | | t(f,base)
t(f,HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 05
2. 24 | 3. 5
0. 9
0. 02
3. 52 | | 3. 3
0. 9
0. 07
3. 36 | | | | | NO UPSTREAM SIGNAL EFFE | TS DDESE | St | ep 5: P0T | ENTIAL CA | PACITIES | | | | | | NO UPSIKEAW SIGNAL EFFE | > PKE >EI | N I | | | | | | | | | Approach ER
Movement 1U
U | | WE
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, x)
t(f, x)
c(p, x) | 4. 15
2. 24
974 | 3. 52 | 6. 27
3. 36
473 | | |--|-------------------------------|---------------------------------------|---|----------| | Steps | s 6 - 9: MC | OVEMENT CAPACITIES | | | | Pedestrian Impedance
Approach
Movement | EB
13 | WB
14 | NB
15 | SB
16 | | Pedestrian Flow Rate, v(x)
Lane Width, w
Walking Speed, S(p)
Pedestrian Blockage Factor, f(pb) | 80
12. 0
3. 5
0. 011 | 80
12. 0
3. 5
0. 195 | 189
12.0
3.5
0.086 | 0 | | Major-Street Left-Turn Movement | | 1 | 4 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) Major L-Shared Prob. Q-free St., p*(0,j) | | | 588
974
0. 914
891
0. 882
0. 882 | | | Minor-Street Right-Turn Movement | | 9 | 12 | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | | 630
473
0. 736
348
0. 753 | | | | Major-Street U-turn Movement | | 1U | 4U | | | Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) | | | | | Shared L/U Capacity, c(SH) Probability of Queue-free State, p(0,j) Minor-Street Through Movement 8 11 Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Capacity Adjustment Factor, f(x) Movement Capacity, c(m,x) Probability of Queue-free State, p(0,j) | 7 10 | | |--------|-------------------------| | 1186 | | | 208 | | | 0. 904 | | | | | | | | | 0. 882 | | | 166 | | | | 208
0. 904
0. 882 | Step 11: CONTROL DELAY | | | | | Step ii. | CONTINUE D | LL/\ I | | | | | |---------------|-----------|---------|-----------|----------|------------|------------|-------|----|------------|----| | CONTROL DELAY | TO RANK 2 | THROUGH | 4 MOVEMEN | TS . | | | | | | | | Approach | EB | 3 | WI | 3 | N | lorthBound | d | | SouthBound | d | | Movement | 1U | 1 | 4U | 4 | 7 | 8 | 9 | 10 | 11 | 12 | | | U | L | U | Ĺ | L | Ť | R | L | Т | R | | Flow Rate | | | | 105 | 101 | | 86 | | | | | Movement Cap. | | | | 891 | 166 | | 348 | | | | | Lane Config. | | | | L | L. | | R | | | | | Shared Cap. | | | | 891 | 166_ | | 348_ | | | | | Control Delay | | | | 9. 6 | 55. 5 | | 18. 7 | | | | | Approach
Movement
Lane Config. | _Steps 12
EB
1U | - 13:
1 | APPROACH/I N
WB
4U | TERSECTI ON
4
L | | OL DELAY and
NorthBound
8 | 95%
9
R | QUEUE LENGTH
Soi
10 | S_uthBound
11 | 12 | |---|-----------------------|------------|--------------------------|-------------------------------------|--------------------------------------|---------------------------------|-------------------------------------|---------------------------|------------------|----| | Flow Rate
Lane Capacity
v/c
95% Queue Leng.
Control Delay | | | | 105
891
0. 12
0. 4
9. 6 | 101
166
0. 61
3. 3
55. 5 | | 86
348
0. 25
1. 0
18. 7 | | | | A F 2. 2 A C 38. 6 E 7. 9 This TWSC text report was created on 06/01/2016 16:59:17 | TWO-WAY STOP CONTROL (TWSC) Analysis File Name: Analyst: Collette Frohlich Agency/Co.: EEI Date Performed: 5/24/2016 Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: U | | | | | | | | | | |--|----------|--------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-------------------------------|-----------------|----------| | Vehicle Volumes and Adjustments
Major Street: | | | | | | | | | | | Approach
Movement | 1U | EastBour
1 | nd
2 | 2 | 1 | 4U | WestBo | | 6 | | Movement | Ü | Ĺ | T | 3
R | | U | Ĺ | 5
T | 6
R | | Volume
Peak Hour Factor, PHF | | | 342 | 150 | 0. 83 | | 152 | 213 | | | Hourly Flow Rate, HFR Percent Heavy Vehicles | | | 412 | 181 | 0. 03 | | 183
1 | 257 | | | Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | 0
TR | Left Or | 0
nl y | 1
L | 1
T | 0 | | Median Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | 2
Not Pre | esent | 3 | | No | | Minor street: | | | | | | | | | | | Approach
Movement | | NorthBou
7
L | ind
8
T | 9
R | | | SouthBo
10
L |
ound
11
T | 12
R | | Volume
Peak Hour Factor, PHF | | 105 | | 45 | 0. 83 | | | | | | Hourly Flow Rate, HFR Percent Heavy Vehicles | | 127
1 | | 54
3 | 0. 63 | | | | | | Number of Lanes | | 1 | 0 | 1 | | | 0 | 0 | 0 | | Lane Configuration
RT channelized?
Flared Approach/Storage
Percent Grade | | No | /
0 | R
No | | | No | / | No | | | | Dadastr | ian Volum | nes and A | li ustmant | ·c | | | | | Approach
Movement | | r cuesti | EB
13 | ics and AC | WB
14 | . J | NB
15 | | SB
16 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Facto | r, f(pb) | | 152
12.0
3.5
0.098 | | 152
12. 0
3. 5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | | De | lay, Queu | e Length, | | | vi ce | | | | | Approach EB Movement 1U Lane Config. | 1 | WB
4U | 4
L | No
7
L | rthBound
8 | 9
R | 10
S | outhBound
11 | 12 | | Flow Rate
Lane Capacity
v/c
95% Queue Leng. | | | 183
900
0. 20
0. 8 | 127
205
0. 62
3. 6 | | 54
410
0. 13
0. 5 | | | | | Control Delay
LOS | | | 10. 0
B | 47. 4
E | | 15. 1
C | | | | | Approach Delay
Approach LOS
Intersct. Delay | 7. 1 | | 4. 2
A | | 37. 8
E | | | | | | Step 1: MOVEMENT PRIORITIES | | | | | | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBoui
1
L | nd
2
T | 3
R | | 4U
U | West
4
L | Bound
5
T | 6
R | |---|--------------|-----------------------------|--------------------------------|--------------------------------|---------------------|--------------------------------|-----------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBoo
7
L | 8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Major Street:
Approach
Movement | Ste
1U | p 2: MOVEM
EastBour
1 | | ND VOLUMI | ES AND FLO | N RATES
4U | West | Bound
5 | 6 | | Volume, V(x) | Ü | Ĺ
 | T
342 | R
150 | | υ ¯
 | L
152 | T
213 | Ř
 | | Flow Rate, v(x) Minor Street: | | | 412 | 181
 | | | 183 | 257 | | | Approach
Movement | | NorthBoo
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Volume, $V(x)$
Flow Rate, $V(x)$ | | 105
127 | | 45
54 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING F | LOW RATES | | | | | | Approach
Movement | 1U
U | EastBoui
1
L | nd
2
T | 3
R | | 4U
U | West
4
L | Bound
5
T | 6
R | | Flow Rate, v(x) Conflicting Flow, v(c, x) | - | | 412 | 181 | | - | 183
684 | 257 | | | Minor Street:
Approach
Movement | | NorthBoo
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 127
1369 | | 54
746 | | | | | | | Minor-Street Left-Turn Mo | vements | | | 7 | | | 10 | | | | Conflicting Flow Single Stage, v(c,x) Stage I, v(c,I,x) Stage II, v(c,II,x) | | | | 1369
594
775 | | | | | | | CRITICAL HEADWAYS | Step | | CAL HEADW | | FOLLOW-UP I | HEADWAYS_ | | | | | Approach EB
Movement 1U
U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, base)
Single Stage
Stage I | | | 4. 1 | 7. 1
6. 1 | | 6. 2 | | | | | Stağe II
t(c,HV)
P(HV) | | | 1. 0
0. 01 | 6. 1
1. 0
0. 01 | | 1. 0
0. 03 | | | | | t (c, 6)
G
t (3, LT) | | | 0. 0
0
0. 0 | 0. 2
0
0. 7 | | 0. 1
0
0. 0 | | | | | t(c)
Single Stage
Stage I
Stage II | | | 4. 13 | 6. 43
5. 43
5. 43 | | 6. 23 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U |
1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f, base)
t(f, HV)
P(HV)
t(f) | - | | 2. 2
0. 9
0. 01
2. 23 | 3. 5
0. 9
0. 01
3. 53 | · | 3. 3
0. 9
0. 03
3. 33 | | · | | | | | | | | | | | | | | NO UPSTREAM SIGNA
Approach
Movement | L EFFECTS
EB
1U
U | PRESEN
1
L | T WB
4U
U | 4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | |--|---|-----------------------------|-----------------|--------------------------------|-------------------------------|---------------------------------------|------------------------------|---|--------------------------|----------| | v(c, x)
t(c, x)
t(f, x)
c(p, x) | | | | 684
4. 13
2. 23
904 | 1369
6. 43
3. 53
161 | | 746
6. 23
3. 33
412 | | | | | Minor-Street Left | Movement | S | | | North
Stagel | | | Sou
Stagel | thBound
10
StageII | | | Conflicting Flow
Critical Headway,
Follow-up Headway
Potential Capacit | t(c, x)
, t(f, x) | | | | 594
5. 43
3. 53
549 | 775
5. 43
3. 53
452 | | | | | | Dodootni on Impodo | | | Steps | 6 - 9: MO | VEMENT CA | PACITIES_ | | | | | | Pedestrian Impeda
Approach
Movement | nce | | | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Pedestrian Flow R
Lane Width, w
Walking Speed, S(
Pedestrian Blocka | p) | | | 152
12. 0
3. 5
0. 098 | | 152
12. 0
3. 5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | Major-Street Left | -Turn Mov | ement | | | | 1 | | 4 | | | | Conflicting Flow,
Potential Capacit
Pedestrian Impeda
Movement Capacity
Probability of Qu
Major L-Shared Pr | y, c(p,x)
nce Facto
, c(m,x)
eue-free | r, p(p,
State, | p(0, j) | | | | | 684
904
0. 996
900
0. 797
0. 797 | | | | Minor-Street Righ | it-Turn Mo | vement | | | | 9 | | 12 | | | | Conflicting Flow,
Potential Capacit
Pedestrian Impeda
Movement Capacity
Probability of Qu | y, c(p,x)
nce Facto
, c(m,x) | r, p(p, | | | | 746
412
0. 995
410
0. 868 | | | | | | Major-Street U-tu | rn Moveme | nt | | | | 1U | | 4U | | | | Conflicting Flow,
Potential Capacit
Capacity Adjustme
Movement Capacity
Shared L/U Capaci
Probability of Qu | y, c(p,x)
nt Factor
, c(m,x)
ty, c(SH) | , f(x) | p(0,j) | | | | | | | | | Minor-Street Thro | ugh Movem | ent | | | | 8 | | 11 | | | | Conflicting Flow,
Potential Capacit
Pedestrian Impeda
Capacity Adjustme
Movement Capacity
Probability of Qu | y, c(p,x)
nce Facto
nt Factor
, c(m,x) | r, p(p,
, f(x) | | | | | | | | | | Minor-Street Left | -Turn Mov | ement | | | | 7 | | 10 | | | | Conflicting Flow,
Potential Capacit
Pedestrian Impeda
Major L, Minor T
Major L, Minor T
Capacity Adjustme | y, c(p,x)
nce Facto
Adj. Imp.
Impedance
nt Factor | r, p(p,
Factor
Factor | , p"
, p' | | | 1369
161
0. 898 | | | | | | Movement Capacity Capacity for Two- Minor-Street Left | Stage Mov | | | | | 115
 | | 10 | | | | Part 1 - Stage I
Conflicting Flow,
Potential Capacit
Pedestrian Impeda
Capacity Adjustme | v(c,x)
y, c(p,x)
nce Facto | r, p(p, | | | | 594
549
0. 996
0. 794 | | - | | | 8 37. 8 E R 54 410 0.13 15.1 0.5 С 10 11 12 1U Movement Flow Rate v/c LOS Lane Config. Lane Capacity 95% Queue Leng. Control Delay Approach Delay Approach LOS Intersct. Delay 1 7.1 4U 183 900 0.20 10.0 0.8 B 4. 2 Α 127 205 0.62 47.4 3.6 Ε This TWSC text report was created on 06/01/2016 17:01:21 | TWO-WAY STOP CONTROL (TWSC) Analysis File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: East/West Street Name: North/South Street Name: Analysis Time Period (hrs): TWO-WAY STOP CONTROL (TWSC) Analysis Future Traffic - PM Peak Hour Collette Frohlich EEI Date Performed: 5/24/2016 EAH EASD #131 Analysis Year: 2018 Project Description: EAHS Expansion U. S. Customary Intersection Name: East-West East-West Street Name: Tomcat Lane Analysis Time Period (hrs): O. 25 | | | | | | | | | | |--|----------|--------------------|-------------------------------|--------------------|-------------------------------|--------------------|--------------------------------|-----------------|---------| | Major Street: | | Vehi cl | e Volumes | and Adju | ustments_ | | | | | | Approach
Movement | 1U | EastBour
1 | nd
2 | 3 | 1 | 4U | WestBou
4 | ind
5 | 6 | | | Ü | Ĺ | T | Ř | | Ü | Ĺ | Ť | Ř | | Volume
Peak Hour Factor, PHF | | | 273 | 63 | 0. 88 | | 89 | 280 | | | Hourly Flow Rate, HFR
Percent Heavy Vehicles | | | 310 | 72 | | | 101
5 | 318 | | | Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | O
TR | Left On | 0
I y | 1
L | 1
T | 0 | | Median Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | 2
Not Pre | sent | 3 | | No | | Minor street: | | | | | | | | | | | Approach
Movement | | NorthBou
7
L | ınd
8
T | 9
R | | | SouthBo
10
L | ound
11
T | 12
R | | Volume | | 82 | | 69 | | | | | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | 93 | | 78 | 0. 88 | | | | | | Percent Heavy Vehicles
Number of Lanes | |
2
1 | 0 | 7
1 | | | 0 | 0 | 0 | | Lane Configuration
RT channelized?
Flared Approach/Storage
Percent Grade | | L
No | /
0 | R
No | | | No | / | No | | TOTAL GLAVE | | | | | | | | | | | Approach | | Pedestr | EB | nes and Ad | WB | S | NB | | SB | | Movement | | | 13 | | 14 | | 15 | | 16
 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Factor | ^, f(pb) | | 80
12. 0
3. 5
0. 011 | | 80
12. 0
3. 5
0. 195 | | 189
12. 0
3. 5
0. 086 | | 0 | | | De | lay, Queu | e Length, | | | vi ce | | | | | Approach EB
Movement 1U
Lane Config. | 1 | WB
4U | 4
L | Noi
7
L | rthBound
8 | 9
R | 10 | outhBound
11 | 12 | | Flow Rate
Lane Capacity
v/c | | | 101
904
0. 11 | 93
346
0. 27 | | 78
355
0. 22 | | | | | 95% Queue Leng.
Control Delay
LOS | | | 0. 4
9. 5
A | 1. 1
19. 2
C | | 0. 8
18. 0
C | | | | | Approach Delay
Approach LOS
Intersct. Delay | 4. 3 | | 2. 3
A | | 18. 6
C | | | | | | Step 1: MOVEMENT PRIORITIES | | | | | | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestB
4
L | ound
5
T | 6
R | |---|----------|-------------------|--------------------------------|---------------------------------|---------------------|--------------------------------|------------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Major Street: | Ste | • | | ND VOLUM | ES AND FLO | W RATES | WaatD | | | | Approach
Movement | 1U
U | EastBou
1
L | 2
T | 3
R | | 4U
U | WestB
4
L | 5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 273
310 | 63
72 | | | 89
101 | 280
318 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 82
93 | | 69
78 | | | | | | | | | Step | 3: CONFL | ICTING F | LOW RATES | | | | | | Major Street:
Approach
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | WestB
4
L | ound
5
T | 6
R | | Flow Rate, v(x) Conflicting Flow, v(c, x) | | | 310 | 72 | | | 101
571 | 318 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | South
10
L | Bound
11
T | 12
R | | Flow Rate, v(x) Conflicting Flow, v(c,x) | | 93
1135 | | 78
615 | | | | | | | Minor-Street Left-Turn Mo | ovements | | | 7 | | | 10 | | | | Conflicting Flow Single Stage, v(c,x) Stage I, v(c,I,x) Stage II, v(c,II,x) | | | | 1135
535
600 | | | | | | | CRITICAL HEADWAYS | Step | | CAL HEADW | | FOLLOW-UP I | HEADWAYS_ | | C | | | Approach EB
Movement 1U
U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, base)
Single Stage
Stage I
Stage II | | | 4. 1 | 7. 1
6. 1
6. 1 | | 6. 2 | | | | | t(c,HV)
P(HV)
t(c,G)
G | | | 1. 0
0. 05
0. 0
0 | 1. 0
0. 02
0. 2
0 | | 1. 0
0. 07
0. 1
0 | | | | | t(3, LT)
t(c)
Single Stage
Stage I
Stage II | | | 0. 0
4. 15 | 0. 7
6. 42
5. 42
5. 42 | | 0. 0
6. 27 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f,base) t(f,HV) P(HV) t(f) | | | 2. 2
0. 9
0. 05
2. 24 | 3. 5
0. 9
0. 02
3. 52 | | 3. 3
0. 9
0. 07
3. 36 | | | | | | | Step | 5: POTE | NTIAL CA | PACITIES | | | | | | NO UPSTREAM SIGN
Approach
Movement | NAL EFFECTS
EB
1U
U | S PRESE
1
L | NT WB | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | |--|---|-------------------------------|----------------|-------------------------------|-------------------------------|--|------------------------------|---|---------------------------|----------| | v(c, x)
t(c, x)
t(f, x)
c(p, x) | | | | 571
4. 15
2. 24
989 | 1135
6. 42
3. 52
224 | | 615
6. 27
3. 36
483 | | | | | Mi nor-Street Lef | ft Movemen | ts | | | North
Stagel | Bound
7
Stagell | | Sou
Stagel | thBound
10
Stagel I | | | Conflicting Flow
Critical Headway
Follow-up Headway
Potential Capaci | y, t(c,x)
ay, t(f,x) | | | | 535
5. 42
3. 52
587 | 600
5. 42
3. 52
548 | | | | | | | | | Steps | 6 - 9: MO | VEMENT CA | APACITIES_ | | | | | | Pedestrian Imped
Approach
Movement | dance | | | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Pedestrian Flow
Lane Width, w
Walking Speed, S
Pedestrian Block | S(p) | |) | 80
12. 0
3. 5
0. 011 | | 80
12. 0
3. 5
0. 195 | | 189
12. 0
3. 5
0. 086 | , | 0 | | Major-Street Lef | ft-Turn Mov | vement | | | | 1 | | 4 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Movement Capacit
Probability of C
Major L-Shared F | ty, c(p,x)
dance Facto
ty, c(m,x)
Dueue-free | or, p(p
State, | p(0,j) | | | | | 571
989
0. 914
904
0. 888
0. 888 | . | | | Minor-Street Rig | ght-Turn Mo | ovement | | | | 9 | | 12 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Movement Capacit
Probability of C | ty, c(p,x)
dance Facto
ty, c(m,x) | or, p(p | | | | 615
483
0. 736
355
0. 780 | | | | | | Major-Street U-1 | turn Movem | ent | | | | 1U | | 4U | | | | Conflicting Flow
Potential Capaci
Capacity Adjustm
Movement Capacit
Shared L/U Capac
Probability of C | ty, c(p,x)
ment Factor
ty, c(m,x)
city, c(SH | r, f(x)
) | p(0,j) | | | | | | | | | Minor-Street Thr | ough Move | ment | | | | 8 | | 11 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustm
Movement Capacit
Probability of C | ty, c(p,x)
dance Facto
ment Factor
ty, c(m,x) | or, p(p
r, f(x) | | | | | | | | | | Mi nor-Street Lef | ft-Turn Mo | vement | | | | 7 | | 10 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Major L, Minor 1
Major L, Minor 1
Capacity Adjustm
Movement Capacit | ty, c(p,x)
dance Facto
F Adj. Imp
F Impedanco
ment Factor | or, p(p
. Facto
e Facto | r, p"
r, p' | | | 1135
224
0. 904
0. 888
180 | | | | | | Capacity for Two
Minor-Street Lef | | | | | | 7 | | 10 | | | | Part 1 - Stage I
Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustm | v, v(c,x)
ty, c(p,x)
dance Facto | or, p(p | | | | 535
587
0. 914
0. 812 | | | | | | Movement Capacity, c(m,x) | 477 | |--|---| | Part 2 - Stage II Conflicting Flow, v(c,x) Potential Capacity, c(p,x) Pedestrian Impedance Factor, p(p,x) Capacity Adjustment Factor, f(p,I) Movement Capacity, c(m,x) | 600
548
0. 989
0. 989
542 | | Part 3 - Single Stage
Conflicting Flow, v(c,x)
Potential Capacity, c(p,x)
Pedestrian Impedance Factor, p(p,x)
Major L, Minor T Adj. Imp. Factor, p"
Major L, Minor T Impedance Factor, p' | 1135
224
0. 904 | | Capacity Adjustment Factor, f(p, I) Movement
Capacity, c(m, x) | 0. 888
180 | | Results for Two-Stage Process:
Adjustment Factor, a
Intermediate Variable, y
Total Capacity, c(T) | 0. 949
1. 138
346 | | Step 11: CONTROL DELAY TO RANK 2 THROUGH 4 MOVEMENTS Approach EB WB Movement 1U 1 4U 4 U L U L | CONTROL DELAY SouthBound | | Flow Rate 101 Movement Cap. 904 Lane Config. L Shared Cap. 904 Control Delay 9.5 | 93 78
346 355
L R
346 355
19. 2 18. 0 | | Steps 12 - 13: APPROACH/INTERSECTAPPROACH WB | CTION CONTROL DELAY and 95% QUEUE LENGTHS | | Movement 1U 1 4U 4
Lane Config. L | 7 8 9 10 11 12
L R | | Flow Rate Lane Capacity v/c 95% Queue Leng. Control Delay LOS Approach Delay Approach LOS Intersct. Delay 4.3 | 93 78
346 355
1 0.27 0.22
1.1 0.8
19.2 18.0
C 18.6 | This TWSC text report was created on 06/01/2016 17:00:16 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs | CC
EF
5,
AM
E/
20
E/
U.
E2
51 | uture Trafillette From Property (24/2016) If Peak Hous | ohlich
r
ion
ary
eway 1 | Peak Hou | - 75%
75% | | | | | |--|--|---|--------------------------------------|--------------------------------------|--------------------------------|-------------------------------------|-------------------------------|-----------------|----------| | Major Street: | | venici
EastBour | e Volumes | and Auj | is tillerits_ | | WestBo | und | | | Approach
Movement | 1U
U | 1
L | 2
T | 3
R | | 4U
U | 4
L | 5
T | 6
R | | Vol ume | | | 367 | 162 | | | 163 | 226 | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | | 442 | 195 | 0. 83 | | 196 | 272 | | | Percent Heavy Vehicles
Number of Lanes
Lane Configuration
Median Type | 0 | 0 | 1 | O
TR | Left Or | 0
il y | 1
1
L | 1
T | 0 | | Median Storage
RT channelized?
Left-Turn Lane Storage
Upstream Signal? | | | | No | 2
Not Pre | esent | 3 | | No | | Minor street: | | NonthDo | | | | | CourthD | | | | Approach
Movement | | NorthBoo
7
L | na
8
T | 9
R | | | SouthBo
10
L | ouna
11
T | 12
R | | Volume
Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | 110
133 | | 48
58 | 0. 83 | | | | | | Percent Heavy Vehicles
Number of Lanes | | 1 | 0 | 3
1 | | | 0 | 0 | 0 | | Lane Configuration
RT channelized?
Flared Approach/Storage
Percent Grade | | L
No | /
0 | R
No | | | No | / | No | | | | Pedestr | ian Volum | nes and Ad | diustment | ·s | | | | | Approach
Movement | | | EB
13 | ios and 7. | WB
14 | . U | NB
15 | | SB
16 | | Flow (ped/hr)
Lane Width (ft)
Walking Speed (ft/sec)
Pedestrian Blockage Facto | or, f(pb) | | 152
12.0
3.5
0.098 | | 152
12. 0
3. 5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | Approach EB
Movement 1U
Lane Config. | De | elay, Queu
WB
4U | e Length,
4
L | and Leve
No
7
L | el of Ser
rthBound
8 | rvi ce
9
R | 10 | outhBound
11 | 12 | | Flow Rate Lane Capacity v/c 95% Queue Leng. Control Delay | | | 196
867
0. 23
0. 9
10. 4 | 133
178
0. 75
4. 8
68. 1 | | 58
391
0. 15
0. 5
15. 8 | | | | | LOS
Approach Delay
Approach LOS
Intersct. Delay | 9. 3 | | B
4. 3
A | F | 52. 2
F | С | | | | | | | Step | 1: MOVEN | MENT PRIO | RI TI ES | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBour
1
L | nd
2
T | 3
R | | 4U
U | West
4
L | Bound
5
T | 6
R | |---|---------|------------------------|---------------|---------------------------------|---------------------|---------------|-----------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBou
7
L | 8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Major Street:
Approach | Ste | p 2: MOVEM
EastBour | | ND VOLUMI | ES AND FLOV | V RATES | | Bound | | | Movement | 1U
U | 1
L | 2
T | 3
R | | 4U
U | 4
L | 5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 367
442 | 162
195 | | | 163
196 | 226
272 | | | Minor Street:
Approach
Movement | | NorthBou
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 110
133 | | 48
58 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING F | LOW RATES_ | | | | | | Approach
Movement | 1U
U | EastBour
1
L | nd
2
T | 3
R | | 4U
U | West
4
L | Bound
5
T | 6
R | | Flow Rate, v(x) Conflicting Flow, v(c, x) | | | 442 | 195 | | | 196
728 | 272 | | | Minor Street:
Approach
Movement | | NorthBou
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Flow Rate, v(x)
Conflicting Flow, v(c,x) | | 133
1446 | | 58
782 | | | | | | | Minor-Street Left-Turn Mo | vements | | | 7 | | | 10 | | | | Conflicting Flow Single Stage, v(c,x) Stage I, v(c,I,x) Stage II, v(c,II,x) | | | | 1446
630
816 | | | | | | | CRITICAL HEADWAYS | Step | | AL HEADW | | FOLLOW-UP I | HEADWAYS_ | | | | | Approach EB
Movement 1U
U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, base)
Si ngl e Stage
Stage I | | | 4. 1 | 7. 1
6. 1 | | 6. 2 | | | | | Stağe II
t(c,HV)
P(HV) | | | 1. 0
0. 01 | 6. 1
1. 0
0. 01 | | 1. 0
0. 03 | | | | | t(c, G)
G
t(3, LT) | | | 0. 0 | 0. 2
0 | | 0. 1
0 | | | | | L(3, L1) | | | 0 0 | $^{\circ}$ | | | | | | | t(c) Single Stage Stage I Stage II | | | 0. 0
4. 13 | 0. 7
6. 43
5. 43
5. 43 | | 0. 0
6. 23 | | | | | t(c) Single Stage Stage I Stage II FOLLOW-UP HEADWAYS Approach Movement 1U | 1
L | WB
4U
U | | 6. 43
5. 43
5. 43 | orthBound
8
T | 6. 23 | 10
L | SouthBound
11
T | 12
R | | t(c) Single Stage Stage I Stage II FOLLOW-UP HEADWAYS Approach EB | 1
L | WB
4U
U | 4. 13 | 6. 43
5. 43
5. 43 | | 6. 23 | 10
L | 11 | 12
R | | O UPSTREAM SIGNAL EFFECTS PRESENT pproach EB W ovement 1U 1 4U U L U | NB
4
L | No
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | |--|--------------------------------|-------------------------------|--|------------------------------|---|--------------------------|----------| | (c, x)
(c, x)
(f, x)
(p, x) | 728
4. 13
2. 23
870 | 1446
6. 43
3. 53
144 | | 782
6. 23
3. 33
393 | | | | | inor-Street Left Movements | | North
Stagel | | | | thBound
10
StageII | | | onflicting Flow Rate, v(c,x)
ritical Headway, t(c,x)
ollow-up Headway, t(f,x)
otential Capacity, c(p,x) | | 630
5. 43
3. 53
529 | 816
5. 43
3. 53
433 | | | | | | Step | os 6 - 9: MO' | VEMENT CA | PACITIES | | | | | | edestrian Impedance
pproach
ovement | EB
13 | | WB
14 | | NB
15 | | SB
16 | | edestrian Flow Rate, v(x)
ane Width, w
alking Speed, S(p)
edestrian Blockage Factor, f(pb) | 152
12. 0
3. 5
0. 098 | | 152
12. 0
3.
5
0. 001 | | 91
12. 0
3. 5
0. 004 | | 0 | | ajor-Street Left-Turn Movement | | | 1 | | 4 | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) ovement Capacity, c(m,x) robability of Queue-free State, p(0,j) ajor L-Shared Prob. Q-free St., p*(0,j) | | | | | 728
870
0. 996
867
0. 774
0. 774 | | | | inor-Street Right-Turn Movement | | | 9 | | 12 | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) ovement Capacity, c(m,x) robability of Queue-free State, p(0,j) | | | 782
393
0. 995
391
0. 852 | | | | | | ajor-Street U-turn Movement | | | 1U | | 4U | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) apacity Adjustment Factor, f(x) ovement Capacity, c(m,x) hared L/U Capacity, c(SH) robability of Queue-free State, p(0,j) | | | | | | | | | inor-Street Through Movement | | | 8 | | 11 | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) apacity Adjustment Factor, f(x) ovement Capacity, c(m,x) robability of Queue-free State, p(0,j) | | | | | | | | | inor-Street Left-Turn Movement | | | 7 | | 10 | | | | onflicting Flow, v(c,x) otential Capacity, c(p,x) edestrian Impedance Factor, p(p,x) ajor L, Minor T Adj. Imp. Factor, p" ajor L, Minor T Impedance Factor, p' apacity Adjustment Factor, f(p,l) | | | 1446
144
0. 898
0. 774
100 | | | | | | ovement Capacity, c(m,x) apacity for Two-Stage Movement inor-Street Left-Turn Movement | | | 7 | | 10 | | | | art 1 - Stage I
onflicting Flow, v(c,x)
otential Capacity, c(p,x)
edestrian Impedance Factor, p(p,x)
apacity Adjustment Factor, f(p,I) | | | 630
529
0. 996
0. 771 | | | | | | | ty, c(m,x |) | | | | 408 | | | | | |---|---|---|------------------|--------------------------------------|---------------------------------|---------------------------------------|--------------------------------|----|-------------|---------| | Part 2 - Stage I
Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustr
Movement Capacit | v, v(c,x)
ty, c(p,
dance Fac
nent Fact | x)
tor, p(
or, f(p | o, x)
, l) | | | 816
433
0. 902
0. 902
390 | | | | | | Part 3 - Single
Conflicting Flow
Potential Capaci
Pedestrian Imped
Major L, Minor T
Major L, Minor T
Capacity Adjustr | v, v(c,x)
ty, c(p,
dance Fac
Adj. Im
Impedan
ment Fact | tor, p(p. Factors for | or, p"
or, p' | | | 1446
144
0. 898
0. 774 | | | | | | Movement Capaci | ty, c(m,x |) | | | | 100 | | | | | | Results for Two-
Adjustment Facto
Intermediate Var
Total Capacity, | or, ä
riable, y | | | | | 0. 949
3. 267
178 | | | | | | | | | 9 | Step 11: C0 | ONTROL I | DFI AY | | | | | | CONTROL DELAY TO | | | 4 MOVEMEN | ΓS [·] | | | | | CourthDours | | | Approach
Movement | EB
1U | 1 | WB
4U | 4 | 7 | NorthBound | 0 | 10 | SouthBound | 4.0 | | | | | 10 | | , | 8 | 9 | 10 | 11 | 12 | | | U | L | Ü | Ĺ | Ĺ | 8
T | R | L | T | 12
R | | Flow Rate
Movement Cap.
Lane Config.
Shared Cap. | | | | 196
867
L
867 | 133
178
L
178 | | 58
391
R
391 | | | | | Movement Cap.
Lane Config. | | | | 196
867
L | 133
178
L | | 58
391
R | | | | | Movement Cap.
Lane Config.
Shared Cap.
Control Delay | U
Steps 12 | L | U
 | L
196
867
L
867
10. 4 | 133
178
L
178
68. 1 | T
OL DELAY and | 58
391
R
391
15. 8 | L | T
GTHS | | | Movement Cap.
Lane Config.
Shared Cap. | U | L | U | L
196
867
L
867
10. 4 | 133
178
L
178
68. 1 | Т | 58
391
R
391
15. 8 | L | Т | | This TWSC text report was created on 06/01/2016 17:01:58 | File Name: Analyst: Agency/Co.: Date Performed: Time Analyzed: Jurisdiction: Analysis Year: Project Description: Units: Intersection Name: Major Street Direction: East/West Street Name: North/South Street Name: Analysis Time Period (hrs | Cc
EE
5,
PM
E,
20
E,
U.
E,
51 | uture Trafillette From Property (24/2016) If Peak Hous | ohlich
r
ion
ary
eway 1 | Peak Hou | c - 75% | | | | | |--|--|---|-------------------------------------|---------------|-----------------|---------------|-------------------|-----------------|---------| | Major Street: | | | e Volumes | s and Adji | ustments_ | | Woo+Po: | ınd | | | Approach
Movement | 1U
U | EastBour
1
L | na
2
T | 3
R | | 4U
U | WestBou
4
L | ına
5
T | 6
R | | Volume | | | 285 | к
 | | | 92 | 304 | | | Peak Hour Factor, PHF
Hourly Flow Rate, HFR | | | 324 | 75 | 0.88 | | 105 | 345 | | | Percent Heavy Vehicles Number of Lanes | 0 | 0 | 1 | 0 | | 0 | 5
1 | 1 | 0 | | Lane Configuration
Median Type | <u>~</u> | Ŭ | · | TR | Left On | | Ĺ | τ̈́ | Č | | Median Storage
RT channelized? | | | | No | 2 | J | | | No | | Left-Turn Lane Storage
Upstream Signal? | | | | | Not Pre | esent | 3 | | | | Mi nor street:
Approach | | NorthBou | ınd | | | | SouthBo | ound | | | Movement | | 7
L | 8
T | 9
R | | | 10
L | 11
T | 12
R | | Volume
Peak Hour Factor, PHF | | 89 | | 76 | 0. 88 | | | | | | Hourly Flow Rate, HFR Percent Heavy Vehicles | | 101
2 | | 86
7 | 0.88 | | | | | | Number of Lanes Lane Configuration | | 1 | 0 | ,
1
R | | | 0 | 0 | 0
| | RT channelized? Flared Approach/Storage | | No | / | No | | | No | / | No | | Percent Grade | | NO | Ó | | | | NO | , | | | Approach | | Pedestr | ian Volum
EB | nes and Ad | djustment
WB | :S | NB | | SB | | Movement | | | 13 | | 14 | | 15 | | 16 | | Flow (ped/hr)
Lane Width (ft) | | | 80
12. 0 | | 80
12. 0 | | 189
12. 0 | | 0 | | Walking Speed (ft/sec)
Pedestrian Blockage Facto | or, f(pb) | | 3. 5
0. 011 | | 3. 5
0. 195 | | 3. 5
0. 086 | | | | Ü | ., . | elay, Queu | | and Leve | | rvi ce | | | | | Approach EB
Movement 1U
Lane Config. | 1 | WB
4U | 4
L | | rthBound
8 | 9
R | 10 | outhBound
11 | 12 | | Flow Rate | | | 105 | 101 | | 86 | | | | | Lane Capacity v/c | | | 891
0. 12 | 330
0. 31 | | 348
0. 25 | | | | | 95% Queue Leng.
Control Delay | | | 0. 4
9. 6 | 1. 3
20. 6 | | 1. 0
18. 7 | | | | | LOS
Approach Delay | | | A
2. 2 | С | 19. 7 | С | | | | | Approach LOS
Intersct. Delay | 4. 5 | | Α | | С | | | | | | | | Step | 1: MOVEN | MENT PRIO | RI TI ES | | | | | | Major Street:
Approach
Priority
Movement | 1U
U | EastBou
1
L | nd
2
T | 3
R | | 4U
U | West
4
L | Bound
5
T | 6
R | |---|----------------|---------------------------------|--------------------------------|--|---------------------|------------------------------------|-----------------|-----------------------|---------| | Minor Street:
Approach
Priority
Movement | | NorthBo
7
L | 8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Major Street:
Approach
Movement | Ste
1U
U | o 2: MOVEN
EastBou
1
L | | .ND VOLUM
3
R | ES AND FLO | V RATES
4U
U | West
4
L | Bound
5
T | 6
R | | Volume, V(x)
Flow Rate, v(x) | | | 285
324 | 66
75 | | | 92
105 | 304
345 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Volume, V(x)
Flow Rate, v(x) | | 89
101 | | 76
86 | | | | | | | Major Street: | | Step | 3: CONFL | ICTING F | LOW RATES_ | | | | | | Approach
Movement | 1U
U | EastBou
1
L | 2
T | 3
R | | 4U
U | 4
L | Bound
5
T | 6
R | | Flow Rate, v(x) Conflicting Flow,v(c,x) | | | 324 | 75 | | | 105
588 | 345 | | | Minor Street:
Approach
Movement | | NorthBo
7
L | und
8
T | 9
R | | | Sout
10
L | hBound
11
T | 12
R | | Flow Rate, v(x) Conflicting Flow, v(c,x) | | 101
1185 | | 86
630 | | | | | | | Minor-Street Left-Turn Mc | vements | | | 7 | | | 10 | | | | Conflicting Flow Single Stage, v(c,x) Stage I, v(c,I,x) Stage II, v(c,II,x) | | | | 1185
550
635 | | | | | | | CRITICAL HEADWAYS | Step | 4: CRITIC | CAL HEADW | AYS and | FOLLOW-UP I | HEADWAYS_ | | | | | Approach EB
Movement 1U
U | 1
L | WB
4U
U | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(c, base) Single Stage Stage Stage t(c, HV) P(HV) t(c, G) | | | 4. 1
1. 0
0. 05
0. 0 | 7. 1
6. 1
6. 1
1. 0
0. 02
0. 2
0 | | 6. 2
1. 0
0. 07
0. 1
0 | | | | | G
t(3,LT)
t(c)
Single Stage
Stage I
Stage II | | | 0. 0
4. 15 | 0. 7
6. 42
5. 42
5. 42 | | 0. 0
6. 27 | | | | | FOLLOW-UP HEADWAYS Approach EB Movement 1U U | 1
L | WB
4U
U | 4
L | N
7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | t(f,base)
t(f,HV)
P(HV)
t(f) | | | 2. 2
0. 9
0. 05
2. 24 | 3. 5
0. 9
0. 02
3. 52 | | 3. 3
0. 9
0. 07
3. 36 | | | | | | | Step | 5: P0TE | NTIAL CA | PACITIES | | | | | | NO UPSTREAM SIGN
Approach
Movement | NAL EFFECT
EB
1U
U | S PRESE
1
L | NT WB | 4
L | 7
L | orthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | |--|---|-------------------------------|----------------|-------------------------------|-------------------------------|--|------------------------------|---|---------------------------|----------| | v(c, x)
t(c, x)
t(f, x)
c(p, x) | | | | 588
4. 15
2. 24
974 | 1185
6. 42
3. 52
209 | | 630
6. 27
3. 36
473 | | | | | Minor-Street Lef | ft Movemen | ts | | | North
Stagel | Bound
7
Stagel I | | Sou
Stagel | ithBound
10
Stagell | | | Conflicting Flow
Critical Headway
Follow-up Headway
Potential Capaci | y, t(c,x)
ay, t(f,x) | | | | 550
5. 42
3. 52
578 | 635
5. 42
3. 52
528 | | | | | | | | | Steps | 6 - 9: MO | VEMENT CA | APACITIES_ | | | | | | Pedestrian Imped
Approach
Movement | dance | | · | EB
13 | | WB
14 | | NB
15 | | SB
16 | | Pedestrian Flow
Lane Width, w
Walking Speed, S
Pedestrian Block | S(p) | |) | 80
12. 0
3. 5
0. 011 | | 80
12. 0
3. 5
0. 195 | | 189
12. 0
3. 5
0. 086 |) | 0 | | Major-Street Lef | ft-Turn Mo | vement | | | | 1 | | 4 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Movement Capacit
Probability of C
Major L-Shared F | ty, c(p,x
dance Fact
ty, c(m,x)
Queue-free | or, p(p
State, | p(0,j) | | | | | 588
974
0. 914
891
0. 882
0. 882 | 2 | | | Minor-Street Rig | ght-Turn M | ovement | | | | 9 | | 12 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Movement Capacit
Probability of C | ty, c(p,x
dance Fact
ty, c(m,x) | or, p(p | | | | 630
473
0. 736
348
0. 753 | | | | | | Major-Street U-1 | turn Movem | ent | | | | 1U | | 4U | | | | Conflicting Flow
Potential Capaci
Capacity Adjustm
Movement Capacit
Shared L/U Capac
Probability of C | ty, c(p,x
ment Facto
ty, c(m,x)
city, c(SH | r, f(x)
) | p(0,j) | | | | | | | | | Minor-Street Thr | ough Move | ment | | | | 8 | | 11 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustm
Movement Capacit
Probability of C | ty, c(p,x
dance Fact
ment Facto
ty, c(m,x) | or, p(p
r, f(x) | | | | | | | | | | Mi nor-Street Lef | ft-Turn Mo | vement | | | | 7 | | 10 | | | | Conflicting Flow
Potential Capaci
Pedestrian Imped
Major L, Minor T
Major L, Minor T
Capacity Adjustm
Movement Capacit | ty, c(p,x
dance Fact
F Adj. Imp
F Impedanc
ment Facto | or, p(p
. Facto
e Facto | r, p"
r, p' | | | 1185
209
0. 904
0. 882
166 | | | | | | Capacity for Two
Minor-Street Lef | | | | | | 7 | | 10 | | | | Part 1 - Stage I
Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustm | w, v(c,x)
ty, c(p,x
dance Fact | or, p(p | | | | 550
578
0. 914
0. 807 | | | | | | Movement Capaci | ty, c(m, | () | | | | 466 | | | | | |--|---|------------------------------|----------------------------------|--|--|---------------------------------------|--------------------------------|---------|------------------------------------|---------| | Part 2 - Stage I
Conflicting Flow
Potential Capaci
Pedestrian Imped
Capacity Adjustr
Movement Capacit | v, v(c,x)
ty, c(p,
dance Fac
ment Fact | x)
ctor, p(μ
tor, f(p, | | | | 635
528
0. 989
0. 989
522 | | | | | | Part 3 - Single
Conflicting Flow
Potential Capaci
Pedestrian Impec
Major L, Minor T
Major L, Minor T | ν, ν(c,x)
ty, c(p,
dance Fac
Γ Adj. Ir | x)
ctor, p(μ
np. Facto | or, p" | | | 1185
209
0. 904 | | | | | | Capacity Adjustr
Movement Capacit | nent Fact | tor, f(p, | i) | | | 0. 882
166 | | | | | | Results for Two-
Adjustment Facto
Intermediate Var
Total Capacity, | or, a
riable, y | | | | | 0. 949
1. 196
330 | | | | | | CONTROL DELAY TO |) DANK 2 | TUDOUCU | 4 MOVEMEN | Step 11: C | ONTROL D | ELAY | | | | | | CUNTRUL DELAY TO | J KANK Z | INKUUGH | 4 IVIO V LIVILIN | 13 | | | | | | | | Approach
Movement | EE
1U
U | | WE
4U
U | | 7
L | lorthBound
8
T | 9
R | 10
L | SouthBound
11
T | 12
R | | Approach | EE
1U | 3
1 | WE
4U | 3
4 | 7 | 8 | | 10 | 11 | | | Approach Movement Flow Rate Movement Cap. Lane Config. Shared Cap. Control Delay | TU
U
U
Steps 12 | 3
1
L
 | 4U
U
U
APPROACH/I | 3
4
L
105
891
L
891
9. 6 | 7
L
101
330
L
330
20. 6 | 8
T
 | 86
348
R
348
18. 7 | 10
L | 11
T | | | Approach Movement Flow Rate Movement Cap. Lane Config. Shared Cap. | TU
U
U | 3
1
L
 | 4U
U | 3
4
L
105
891
L
891
9. 6 | 7
L
101
330
L
330
20. 6 | 8
T | 86
348
R
348
18. 7 | 10
L | 11
T | | | Approach Movement Flow Rate Movement Cap. Lane Config. Shared Cap. Control Delay Approach Movement | Steps 12 | 3
1
L
2 - 13: / | 4U
U
V
APPROACH/I
WE | 3
4
L
105
891
L
891
9. 6
NTERSECTI 0 | 7
L
101
330
L
330
20. 6
N CONTRO
N | 8
T
DL DELAY and
JorthBound | 86
348
R
348
18. 7 | 10
L | 11
T
T
THS_
SouthBound | R |