Traffic Impact Study

Proposed Warehouse Building

SEC Ferry Road at Frieder Lane

Aurora, Illinois

September 30, 2021

Prepared For:

LPC Acquisition Company, LLC A Delaware Limited Liability Company One North Wacker Drive Suite 1925 Chicago, IL 60606

Prepared by:

Dan Brinkman, P.E., PTOE

Assistant Director of Transportation Services

GFA GEWALT HAMILTON ASSOCIATES, INC.

Part I. Introduction and Project Context

Gewalt Hamilton Associates, Inc. (GHA) has conducted a Traffic Impact Study (TIS) for the proposed Logistics / Warehouse building to be constructed on the approximately 17.5-acre subject site located at the southeast corner of the Ferry Road intersection with Frieder Lane in Aurora, Illinois. Per the September 24, 2021 Site Plan, prepared by Webster, McGrath & Ahlberg, Ltd, LPC Acquisition Company, LLC, a wholly-owned entity of Logistics Property Company, LLC (hereafter LPC) is proposing to construct a single 270,953 square foot building with access to both Frieder Lane and Meridian Road as well as Sunrise Road.

The following summarizes our findings and provides various recommendations for your consideration. *Appendices* referenced are in the Technical Addendum at the end of this document.

Part II. Background Information

Site Location Map and Roadway Inventory

Exhibit 1 provides a site location map. The existing traffic operations in the site area are illustrated on **Exhibit 2**. **Appendix A** provides a photo inventory of operations along the site frontage. Pertinent comments to the adjacent roadways include:

Ferry Road (County Hwy #3)

- Ferry Road is an east-west Major Collector under the jurisdiction of the DuPage County Division of Transportation (DUDOT).
- Along the site frontage, Ferry Road provides two travel lanes in each direction separated by a wide (±16foot), barrier curb, landscaped median.
- Ferry Road has a posted speed limit of 45 miles per hour (mph) in the vicinity of the site.
- Separate eastbound and westbound left turn lanes are provided at the unsignalized intersections of Ferry Road with both Frieder Lane and Meridian Road.
- The Annual Average Daily Traffic (AADT), year 2016, on Ferry Road was 10,500 vehicles per day.

Frieder Lane

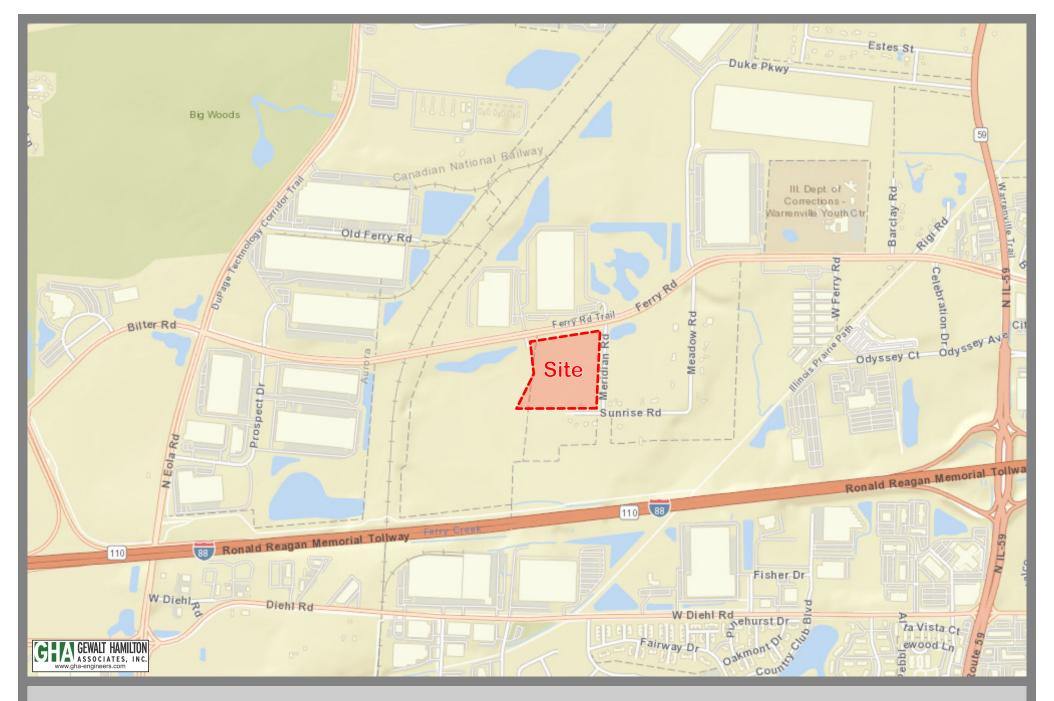
- Frieder Lane is a north south, local route under the jurisdiction of the City of Aurora.
- Frieder Lane provides one travel lane in each direction south of Ferry Road.
- Frieder Lane extends approximately 1,000 feet south of Ferry Road where it terminates as a cul-de-sac.
- There is no posted speed limit on Frieder Lane and no historic AADT traffic volume available.
- Frieder Lane is under Stop sign control at its intersection with Ferry Road.

Meridian Road

- Meridian Road is a north south, local route under the jurisdiction of the City of Aurora, that intersects Ferry Road approximately 950 feet east of Frieder Lane.
- Meridian Road provides a single travel lane in each direction within a narrow (±20-ft) pavement section.
- Meridian Road extends approximately 1,000 feet south of Frieder Lane and terminates at Sunrise Road.
- Meridian Road has a posted speed limit of 25 mph, but no historical AADT volume is available.

Both Frieder Lane and Meridian Road terminate at Ferry Road, but private access driveways, each providing separate left and right turn lanes for southbound traffic under Stop sign control align with the public roads.

Sunrise Road


- Sunrise Road is a local, east-west roadway that extends east from Frieder Lane across Meridian Road and continues east until it turns north and ultimately intersects Ferry Road as Meadow Road.
- Sunrise Road provides a single travel lane in each direction within a narrow (±20-ft) pavement section.
- No speed limit is posted on Sunrise Road along the site frontage and no historical AADT volume is available.

Pedestrian Facilities

- A sidewalk is provided along the south side of Ferry Road along the site frontage.
- An approximately 8-ft wide HMA multi-use path is provided along the north side of Ferry Road in the vicinity of the site.
- A sidewalk is provided along a majority of the west side of Frieder Lane, but it does not connect with the Ferry Road pedestrian facilities.

Transit

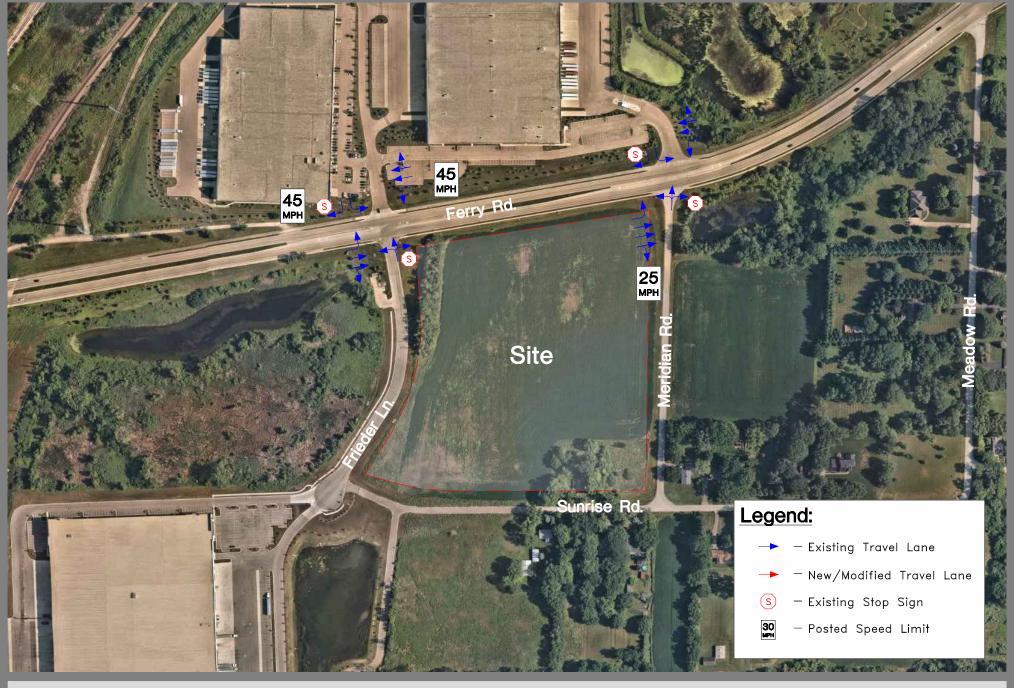
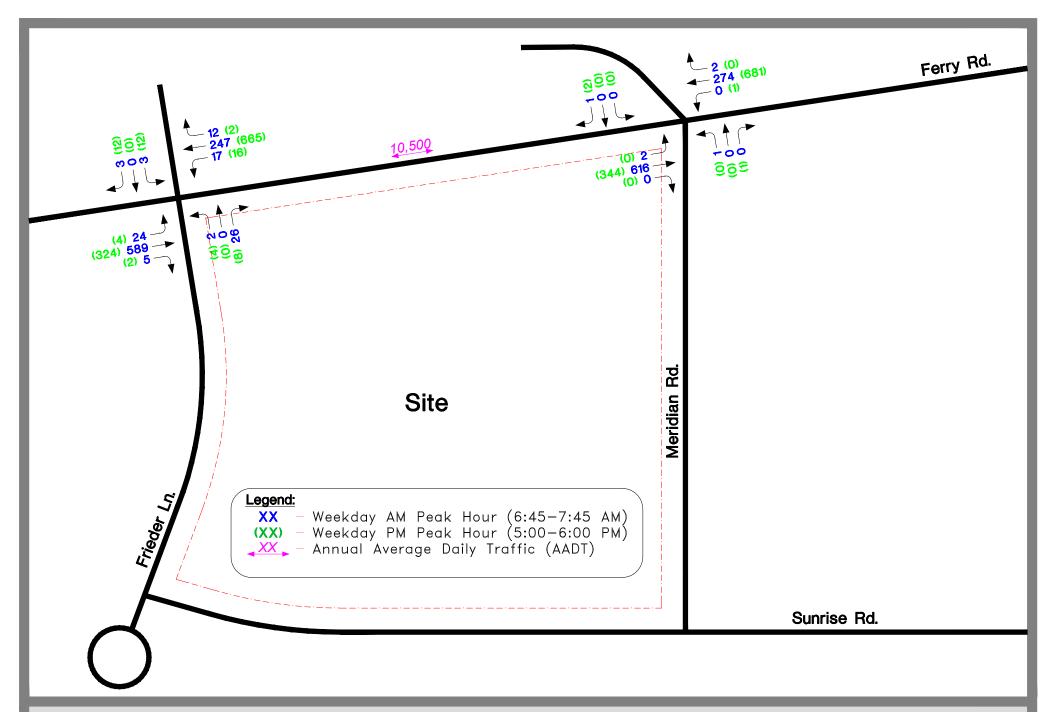

• There are no PACE routes along Ferry Road in the vicinity of the subject site.

Exhibit 1 Site Location Map

Proposed Office/Warehouse Aurora, IL



Existing Traffic

Exhibit 3 summarizes the existing weekday morning and evening peak hour traffic volumes. Peak period traffic turning movement counts were conducted by GHA on Thursday September 9, 2021 from 6:00 AM to 9:00 AM and from 4:00 PM to 7:00 PM at the Ferry Road intersections with Frieder Lane and Meridian Road. The observed weekday morning and evening peak hours generally occurred from 6:45 to 7:45 AM and 5:00 to 6:00 PM respectively. *Exhibit 3* also provides the AADT (24-hour volume) along Ferry Road (year 2016) as published by IDOT on their website: www.gettingaroundillinois.com.

A summary of the traffic counts can be found in *Appendix B*. It should be noted that traffic counts conducted during this post-pandemic time period should be compared to historical data (if available) to analyze whether the volumes have increased or decreased. If the volumes have decreased, a COVID factor should be applied to ensure that the maximum impacts are considered. The traffic counts conducted in 2021 were compared to a 2018 count conducted by GHA at the Ferry Road intersection with IL Rte 59 to the east. Westbound morning and evening peak hour observed traffic was increased by 35 and 40 percent respectively and eastbound morning peak hour traffic was increased by 15 percent. Eastbound evening peak hour traffic was higher than previously observed eastbound volumes and not adjusted for COVID-19.

No unusual activities (e.g., roadway construction, or inclement weather) were observed during our counts that would be expected to impact traffic volumes or travel patterns in the vicinity. Summaries of the 2021 existing and 2018 reference traffic counts can be found in *Appendix B*.

Crash Analysis

Crash data was obtained from the IDOT Division of Transportation and Safety for the last five calendar years, 2016 through 2020. A summary of the crash data is provided in *Table 1* with the locations mapped on the exhibit contained in *Appendix C*.

Table 1: Crash Summary (2016-2020) A

Location	No. of		Se	everit	y ^B				Cras	sh Typ	e ^D			Percent During
Location	Crashes	PD		PI ^C		F	Animal	Turn	Parked	SSD	SOD	FO	Ped	Wet/Icy
			Α	В	С								Bike	Conditions
Intersections - Crashes within 200' of	of intersec	tion												
Ferry Road at Frieder Lane	4	3	-	-	1	-	-	1	1	-	-	2	-	0%
Ferry Road at Meridian Road	4	4	-	-	-	-	1	1	-	1	1	-	-	25%
Total (2016-20)	8	7	0	0	1	0	1	2	1	1	1	2	0	13%

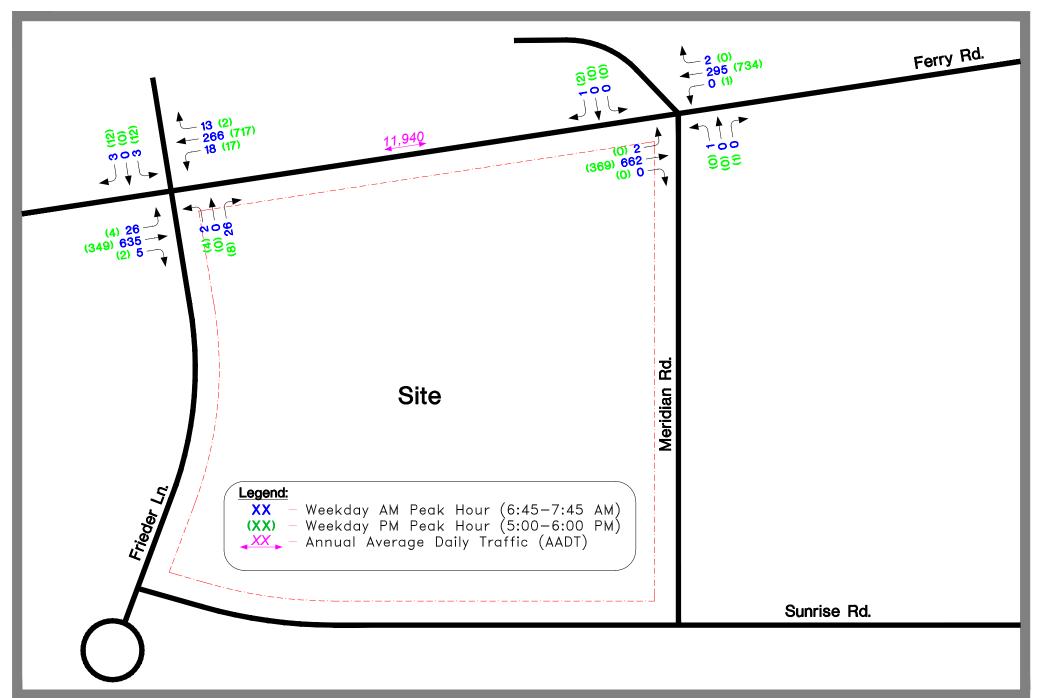
^A Source: IDOT Division of Transportation Safety for the 2016-2020 calendar years.

As shown in Table 1, the intersections of Ferry Road with Frieder Lane and Meridian Road each experienced 4 crashes in the 5-year period. There were two turning movement crashes (one at each intersection) and two fixed object crashes (both at Frieder Lane) during the 5-year period. Only 1 of the 8 observed crashes occurred during a wet/icy pavement condition.

Only one crash resulted in a minor injury, and all others were reported as Property Damage Only (PD) crashes.

One reported crash involved an animal (deer). There were no reported crashes that involved pedestrians or bicyclists throughout the study area.

No-Build Traffic


Traffic growth in the area is a function of expected land development in the region. Future traffic volume conditions were developed for the year 2028, build-out year of the development (year 2023) plus five years. Based on a review of historical traffic volumes and the Chicago Metropolitan Agency for Planning (CMAP) 2050 projections (see *Appendix D*), traffic volumes along Ferry Road are assumed to experience an overall annual compounded growth rate of approximately 0.7 percent per year. Accordingly, the 2028 No-Build peak hour traffic volumes (see *Exhibit 4*) were developed by applying the predicted growth rates to the COVID-19 adjusted existing traffic.

^B PD = property damage only; PI = personal injury; F = fatality.

^C Type A (incapacitating injury); Type B (non-incapacitating injury); Type C (possible injury).

^D Animal = Hit Animal; Turn = Turning; Parked = Hit Parked Vehicle; SSD = Sideswipe Same Direction;

SOD = Sideswiped Opposite Direction FO = fixed object; Bike/Ped = Bicycle or pedestrian.

Part III. Traffic Evaluation

Future Site Characteristics

Proposed Development Plan

LPC proposes to construct a single 270,953 square foot office / warehouse facility on the approximately 17.5acre subject site located on the south side of Ferry Road between Frieder Lane and Meridian Road in Aurora, Illinois. Proposed access for the building is provided on Frieder Lane, Sunrise Road, and Meridian Road. Truck access is focused on the west side (Frieder Lane) of the building, with the auto parking lot and building entrance oriented towards the east side (Meridian Road).

The September 11, 2021 Site Plan is provided in *Appendix E*.

Trip Generation

Table 2 summarizes the traffic generation calculations for the proposed development. Trip generation rates published by the Institute of Transportation Engineers (ITE) in the 10th Edition of the Manual *Trip Generation* were used to determine the anticipated traffic generated by the proposed development. As can be seen in Table 2, the proposed warehouse development is expected to generate approximately 60 trips (combined inbound and outbound) during each or the Peak Hours and approximately 475 trips (again inbound and outbound total) in a 24-hour period.

See *Appendix F* for excerpts of the ITE manual.

Weekday Peak Hours Morning **Evening** Land Use ITE 7:00-8:00 AM 5:00-6:00 PM Daily Out Sum Out Sum Size Code In In In Out Sum **Delivery Station** Warehouse 270.9 KSF 150 45 13 58 16 44 60 New Trips 45 13 58 16 44 60

Table 2: Trip Generation Calculations

Sources:ITE Trip Generation Manual, 10th Edition - See Appendix F

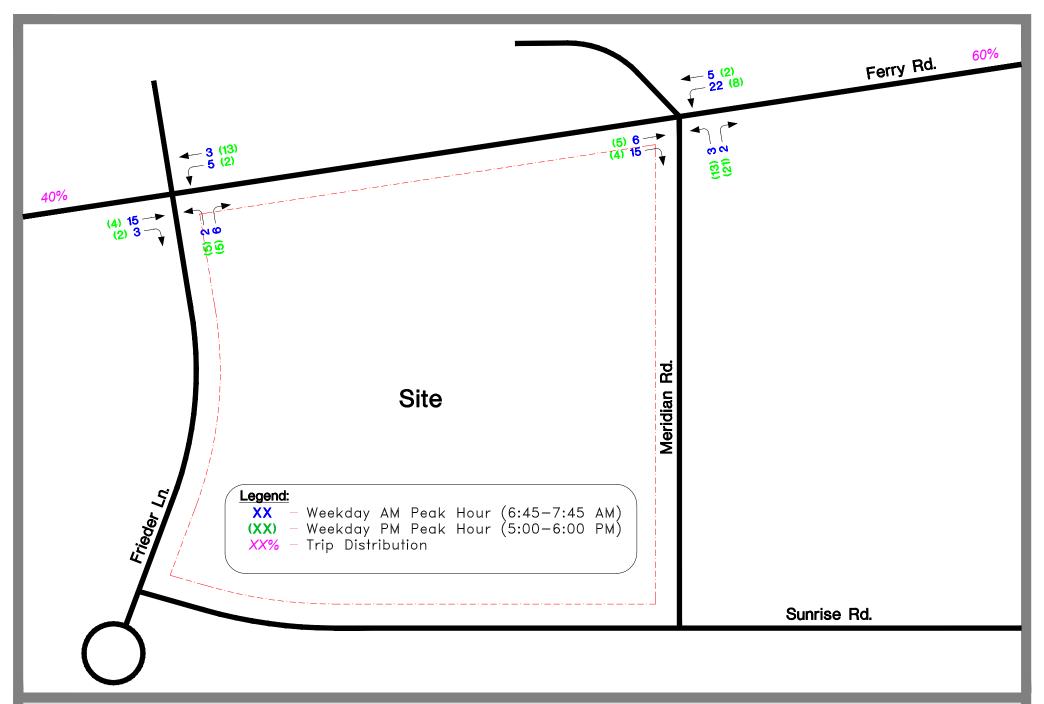
Trip Distribution

Table 3 provides the anticipated distribution of site traffic. This was based on existing site travel patterns, proposed access, and the operational characteristics of the adjacent street system, including the observed distribution of the similar land uses on the north side of Ferry Road.

237

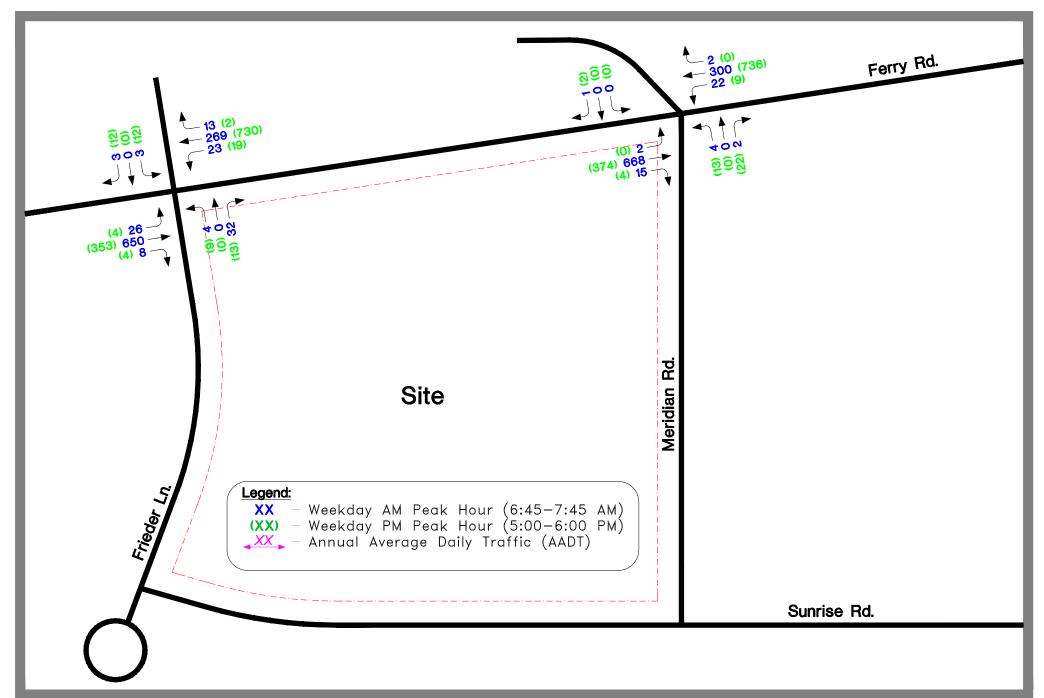
474

Table 3: Trip Distribution


Route & Direction	Percent Route To/From Site
Ferry Road	
West of Site	40%
East of Meridian Lane	60%
Sunrise Road	•
East of Meridian Lane	negligible
Totals =	100%

Traffic usage of the area roadway network is also illustrated on *Exhibit 5*.

Site and Total Traffic Assignments


Exhibit 5 illustrates the site traffic assignment for the development's trips, which is based on the traffic characteristics summarized in *Tables 2 and 3* (traffic generation and trip distribution) and assigned to the area roadways. As previously noted, the proposed development is anticipated to open in late 2022 or early 2023. Therefore, we have considered the total impacts of the complete development for the year 2028, or buildout plus five years.

The site traffic (*Exhibit 5*) and 2028 No-Build traffic (*Exhibit 4*) were combined to produce the 2028 Total traffic, which is illustrated on *Exhibit 6*.

Capacity Analysis

Capacity analyses are a standard measurement that identifies how an intersection operates. They are measured in terms of Level of Service (LOS). The concept of LOS is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six Levels of Service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst. LOS C is often considered acceptable for design purposes and LOS D is usually considered as providing the lower threshold of acceptable operations. Since the level of service is a function of the traffic flows placed upon it, the facility may operate at a wide range of levels of service, depending on the time of day, day of week or period of year. A description of the operating condition under each level of service, based on the analysis parameters as published in the Transportation Research Board's (TRB) Highway Capacity Manual (HCM), Sixth Edition, is provided in *Table 4*.

Table 4: Level of Service (LOS) Summary

	•	Delay (secon	ds / vehicle)
LOS	Description	Traffic Signal	Stop Sign
Α	Describes conditions with little to no delay to motorists.	<10	< 10
В	Represents a desirable level with relatively low delay to motorists.	>10 and < 20	>10 and < 15
С	Describes conditions with average delays to motorists.	>20 and < 35	>15 and < 25
D	Describes operations where the influence of congestion becomes more		
D	noticeable. Delays are still within an acceptable range.	>35 and < 55	>25 and < 35
	Represents operating conditions with high delay values. This level is often		
E	considered within urban settings or for minor streets intersecting major		
	arterial roadways to be the limit of acceptable delay.	>55 and < 80	>35 and < 50
	Is unacceptable to most drivers with high delay values that often occur		
「	when arrival flow rates exceed the capacity of the intersection.	>80	>50

Capacity analyses were performed using the methodologies outlined in the HCM, for the following scenarios:

- Existing Traffic COVID-19 Adjusted Existing traffic (year 2021),
- No-Build Traffic Future (non-site, year 2028) traffic with background growth, and
- Total Traffic Future No-Build traffic volumes (year 2028) plus the addition of the site generated traffic.

2028 Total traffic conditions assumed the following, with *Exhibit 7*, illustrating future traffic operations:

- Eastbound right turns into Frieder Lane and Meridian Road will be made from the existing outside through lane along Ferry Road.
- Westbound left turns into Frieder Lane and Meridian Road will be made from the dedicated left turn lanes that exist within the landscaped median on Ferry Road.
- Site access drives will provide one inbound and one outbound lane under Stop Sign control.
- It is our understanding that LPC will be required to reconstruct and widen by 8-feet the west half of Meridian Road along the site frontage.
- Additionally, LPC will be widening and reconstructing the west half of Sunrise Road along the south site boundary.
- Frieder Lane and Meridian Road will continue to provide a single travel lane in each direction at their respective intersection with Ferry Road

Table 5 summarizes the intersection capacity and queue analysis results.

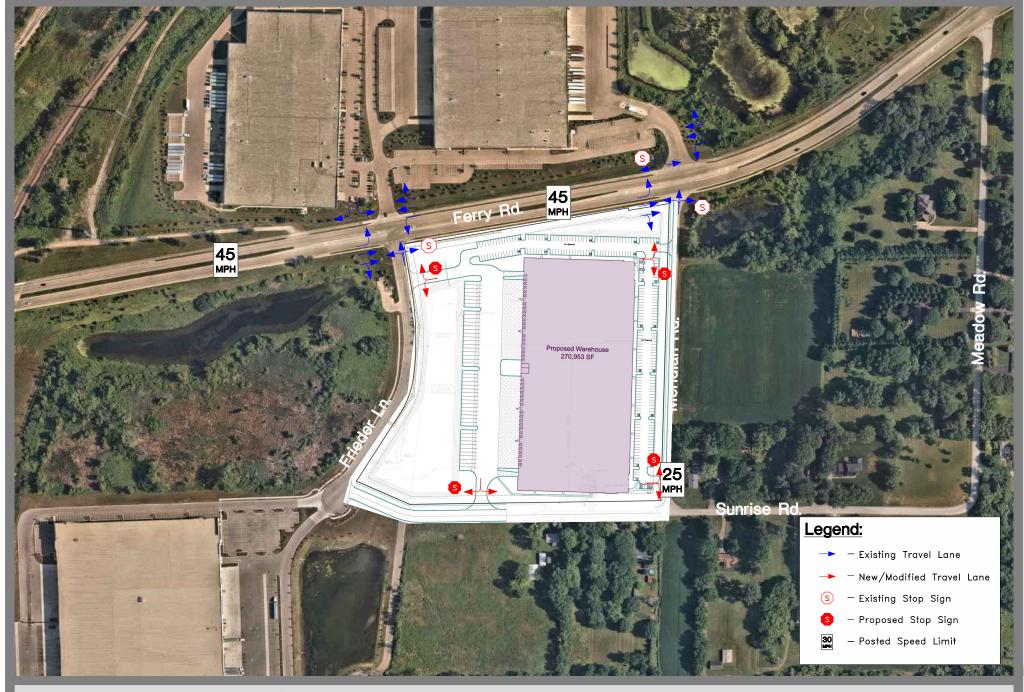
Table 5: Level-of-Service Summary

				L(OS Pe	r Mov	veme	nt By	Арр	roach	า				
						>=	Share	ed La	ne					Intersectio	n/
Intersection / Timeframe / Scenario	Roadway Conditions			oN =	n Crit	ical o	r not	Allo	wed N	Mov e	ment			Approach	ı
		Ea	stbou	nd	We	estbou	ınd	No	rthbou	und	Sou	uthbo	und	Delay	
		LT	ΤH	RT	LT	ΤH	RT	LT	ΤH	RT	LT	ΤH	RT	(sec / veh)	LOS
	TWSC													NB Approach	
1. Ferry Road at Frieder Lane	NB & SB Stop	Ea	stbou	nd	We	estbou	ınd	No	rthbo	und	Sou	uthbo	und	Delay	
A. Weekday Morning Peak Hour															
Existing Traffic (See Exhibit 3)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	10.9	В
	 95th Queue Length (ft) 	3	-	-	3	-	-	-	5	-	0	-	0	-	-
No-Build Traffic (See Exhibit 4)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	11.2	В
	 95th Queue Length (ft) 	3	-	-	3	-	-	-	5	-	0	-	0	-	-
Total Traffic (See Exhibit 6)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	11.6	В
	 95th Queue Length (ft) 	3	-	-	3	-	-	-	5	-	0	-	0	-	-
B. Weekday Evening Peak Hour															
Existing Traffic (See Exhibit 3)	 Current 	Α	-	-	Α	-	-	>	В	<	С	-	В	10.1	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	3	-	3	-	3	-	-
No-Build Traffic (See Exhibit 4)	 Current 	Α	-	-	Α	-	-	>	В	<	С	-	В	10.3	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	3	-	3	-	3	-	-
Total Traffic (See Exhibit 6)	 Current 	Α	-	-	Α	-	-	>	В	<	С	-	В	10.7	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	3	-	3	-	3	-	-

Table 5: Level-of-Service Summary (cont.)

				L(OS Pe	er Mo	veme	nt By	/ App	roach	1				
						>=	Share	ed La	ne					Intersectio	n /
Intersection / Timeframe / Scenario	Roadway Conditions			· = Noı	n Crit	ical c	r not	Allo	wed N	Move	ment			Approact	n
		Ea	ıstbou	nd	We	estbou	und	No	rthbou	und	Sou	uthbo	und	Delay	
		LT	TH	RT	LT	ΤH	RT	LT	ΤH	RT	LT	ΤH	RT	(sec / veh)	LOS
	TWSC													NB Approach	
2. Ferry Road at Meridian Road	NB & SB Stop	Ea	stbou	nd	We	estbou	und	No	rthbo	und	Sou	uthbo	und	Delay	
A. Weekday Morning Peak Hour															
Existing Traffic (See Exhibit 3)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	14.0	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	0	-	0	-	-
No-Build Traffic (See Exhibit 4)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	14.7	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	0	-	0	-	-
Total Traffic (See Exhibit 6)	 Current 	Α	-	-	Α	-	-	>	В	<	В	-	Α	13.6	В
	 95th Queue Length (ft) 	0	-	-	3	-	-	-	0	-	0	-	0	-	-
B. Weekday Evening Peak Hour															
Existing Traffic (See Exhibit 3)	 Current 	Α	-	-	Α	-	-	>	Α	<	В	-	Α	9.4	Α
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	0	-	0	-	-
No-Build Traffic (See Exhibit 4)	 Current 	Α	-	-	Α	-	-	>	В	<	С	-	В	11.8	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	0	-	0	-	-
Total Traffic (See Exhibit 6)	 Current 	Α	-	-	Α	-	-	>	В	<	С	-	В	10.8	В
	 95th Queue Length (ft) 	0	-	-	0	-	-	_	5	-	0	-	0	-	-

Capacity analysis summary printouts are provided in *Appendix G*.


The following summarizes the findings of the Capacity Analyses.

Ferry Road at Frieder Lane

All individual movements and stopped approaches are expected to operate at or above the "design" Level of Service (LOS C) through the year 2028. Calculated queues are minimal, and no additional improvements are needed to accommodate traffic generated by the proposed development.

Ferry Road at Meridian Road

All individual movements and stopped approaches are expected to operate at or above the "design" Level of Service (LOS C) through the year 2028. Calculated queues are minimal, and no additional improvements are needed to accommodate traffic generated by the proposed development.

Part IV. Recommendations and Conclusions

Analyses have been conducted under existing and future conditions to determine the impact from the proposed warehouse development on the study area intersections. The capacity analysis results indicate that the increase in project site-generated traffic has little to no effect upon the Peak Hour operations of the area roadway network.

- Eastbound right turns into Frieder Lane and Meridian Road will be made from the existing outside through lane along Ferry Road.
- Westbound left turns into Frieder Lane and Meridian Road will be made from the dedicated left turn lanes that exist within the landscaped median on Ferry Road.
- Site access drives will provide one inbound and one outbound lane under Stop Sign control.
- It is our understanding that LPC will be required to reconstruct and widen by 8-feet the west half of Meridian Road along the site frontage.
- Additionally, LPC will be widening and reconstructing the west half of Sunrise Road along the south site boundary.
- Frieder Lane and Meridian Road will continue to provide a single travel lane in each direction at their respective intersection with Ferry Road

Part V. Technical Addendum

The following Appendices were previously referenced. They provide technical support for our observations, findings and recommendations discussed in the text.

Appendices

- A. Photo Inventory
- B. 2021 Traffic Count Summaries
- C. Crash Summary Map
- D. CMAP Traffic Projections
- E. September 24, 2021 Site Plan by Webster, McGrath & Ahlberg
- F. ITE Trip Generation Manual Excerpts
- G. Capacity Analysis Worksheets

5841.915 LPC Old Dominion TIS 093021.docx

TECHNICAL ADDENDUM

APPENDICES

- A. Photo Inventory
- B. 2021 Traffic Count Summaries
- C. Crash Summary Map
- D. CMAP Traffic Projections
- E. September 24, 2021 Site Plan
- F. ITE Trip Generation Manual Excerpts
- G. Capacity Analysis Worksheets

APPENDIX A *Photo Inventory*

Looking south across Ferry Road at Site

Looking west along Ferry Road from Frieders Lane.

Looking north along Frieders Ln. approaching Ferry Road

Looking east along Ferry Road from Friders Lane.

Looking north along Meridian Road approaching Ferry Road

Looking west along Ferry Road across Meridian Road

Looking south across Ferry Road approaching Meridian Road.

Looking east along Ferry Road across Meridian Road.

Appendix A Photo Inventory

APPENDIX B 2021 & Historic Traffic Count Data

Ferry Road at Frieder Lane 5841.915 LPC Old Dominion 6 AM - 9 AM, 4 PM - 7 PM GHA Mio

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ferry Road at Frieder Lane Site Code: Start Date: 09/09/2021 Page No: 1

Turning Movement Data

-						-					Bu	ovem	ı urnıng Movement Data	<u> </u>				-						-	
			Frieder	der					Ferry	,					Frieder	je.					Ferry				
į			Southbound	punoc					Westbound	pun					Northbound	pun					Eastbound	рu			
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Teff	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right Pe	Peds A	App. Int.	Int. Total
6:00 AM	0	4	0	1	0	2	0	9	24	4	0	34	0	1	0	3	0	4	0	5	43	0	0	48	91
6:15 AM	0	1	0	0	0	1	0	4	30	2	0	39	0	0	0	9	0	9	0	1	92	2	0	68 1	114
6:30 AM	0	0	0	1	0	1	0	2	40	3	0	45	0	0	0	2	0	5	0	2	96	0	0	98 1	149
6:45 AM	0	1	0	1	0	2	0	2	43	5	0	53	0	0	0	5	0	5	0	7	121	1	0 1	129 1	189
Hourly Total	0	9	0	3	0	6	0	17	137	17	0	171	0	1	0	19	0	20	0	15	325	3	0 3	343 5	543
7:00 AM	0	0	0	1	0	1	0	2	47	3	0	55	0	0	0	6	0	6	0	7	123	2	0 1	132	197
7:15 AM	0	-	0	-	0	2	0	5	38	-	0	44	0	-	0	9	0	7	0	4	126	0	0 1	130	183
7:30 AM	0	1	0	0	0	1	0	2	46	3	0	51	0	1	0	9	0	7	1	9	138	2	0 1	147 2	206
7:45 AM	0	3	0	_	0	4	0	4	45	5	0	54	0	0	0	3	0	3	2	3	116	4	0 1	125 1	186
Hourly Total	0	2	0	3	0	8	0	16	176	12	0	204	0	2	0	24	0	26	3	20	503	8	0 5	534 7	772
8:00 AM	0	3	0	2	0	5	0	4	38	9	0	48	0	1	0	5	0	9	0	4	89	2	0	95 1	154
8:15 AM	0	1	0	1	0	2	0	4	22	9	0	65	0	1	0	3	0	4	0	4	104	1	0 1	109	180
8:30 AM	0	1	0	1	0	2	0	9	33	3	0	42	0	2	0	3	0	5	0	2	96	2	0 1	100	149
8:45 AM	0	2	0	0	0	2	0	4	36	1	0	41	0	2	0	2	0	4	0	1	84	9	0	91 1	138
Hourly Total	0	7	0	4	0	11	0	18	162	16	0	196	0	9	0	13	0	19	0	11	373	11	0	395 6	621
*** BREAK ***								-				-			-		-						_	-	
4:00 PM	0	3	0	5	0	8	0	-	128	2	0	131	0	3	0	9	0	6	0	0	71	0	0	71 2	219
4:15 PM	0	9	0	4	0	10	0	3	92	2	0	100	0	2	0	5	0	7	0	-	09	_	0	62 1	179
4:30 PM	0	4	0	2	0	9	0	3	121	0	0	124	0	_	0	_	0	2	0	2	80	0	0		214
4:45 PM	0	5	0	4	0	6	0	4	110	1	0	115	0	_	0	2	0	3	0	_	62	2	0	65 1	192
Hourly Total	0	18	0	15	0	33	0	11	454	5	0	470	0	7	0	14	0	21	0	4	273	3	0 2	280 8	804
5:00 PM	0	3	0	5	0	8	0	9	127	_	0	134	0	0	0	3	0	3	0	2	80	2	0	84 2	229
5:15 PM	0	3	0	2	0	5	0	3	128	0	0	131	0	_	0	0	0	-	0	2	75	0	0	77 2	214
5:30 PM	0	9	-	5	0	12	0	9	138	_	0	145	0	2	0	2	0	4	0	0	81	0	0	81 2	242
5:45 PM	0	0	0	0	0	0	0	-	126	0	0	127	0	-	0	3	0	4	0	0	78	0	0	78 2	209
Hourly Total	0	12	_	12	0	25	0	16	519	2	0	537	0	4	0	80	0	12	0	4	314	2	0 3		894
6:00 PM	0	-	0	2	0	3	0	3	113	2	0	118	0	5	0	2	0	10	0	_	54	0	0	+	186
6:15 PM	0	4	0	2	0	9	0	3	94	0	0	26	0	0	0	2	0	2	0	2	75	_	0	78	186
6:30 PM	0	3	0	0	0	3	0	2	22	0	0	29	0	9	0	2	0	8	0	0	47	2	0	1	119
6:45 PM	0	0	0	-	_	-	0	3	20	0	0	53	0	0	0	4	0	4	0	_	51	2	0	1	112
Hourly Total	0	8	0	5	_	13	0	11	314	2	0	327	0	11	0	16	0	27	0	4	227	5	0	236 6	603
Grand Total	0	99	-	42	_	66	0	89	1762	54	0	1905	0	31	0	94	0	125	3	58	2015	32	0 2	2108 4	4237
Approach %	0.0	9.95	1.0	42.4			0.0	4.7	92.5	2.8	,	,	0.0	24.8	0.0	75.2			0.1	2.8	92.6	1.5			
Total %	0.0	1.3	0.0	1.0		2.3	0.0	2.1	41.6	1.3		45.0	0.0	0.7	0.0	2.2		3.0	0.1	1.4	47.6	0.8	- 49.	8.8	
Lights	0	39	0	30		69	0	21	1672	42		1735	0	22	0	19		41	_	48	1944	22	- 20	\dashv	3860
% Lights		9.69	0.0	71.4		69.7		23.6	94.9	77.8		91.1		71.0		20.2		32.8	33.3	82.8	96.5	8.8	6 -	92.6	91.1
Mediums	0	3	0	3		9	0	0	35	-		36	0	0	0	-		-	2	2	41	0	,		88
% Mediums		5.4	0.0	7.1		6.1		0.0	2.0	1.9		1.9		0.0		1.1	,	0.8	2.99	3.4	2.0	0.0		2.1	2.1

Articulated Trucks	0	14	-	6		24	0	68	49	11		128	0	6	0	74		83	0	8	26	10	,	44	279
% Articulated Trucks		25.0	25.0 100.0 21.4	21.4		24.2		76.4	2.8	20.4		6.7		29.0		78.7		66.4	0.0	13.8	1.3	31.3		2.1	9.9
Bicycles on Road	0	0	0	0		0	0	0	9	0		9	0	0	0	0	-	0	0	0	4	0		4	10
% Bicycles on Road	-	0.0	0.0	0.0		0.0		0.0	0.3	0.0	,	0.3		0.0		0.0		0:0	0.0	0.0	0.2	0.0		0.2	0.2
Bicycles on Crosswalk	,				_						0						0						0	-	
% Bicycles on Crosswalk					100.0						,													-	
Pedestrians					0						0						0						0	-	
% Pedestrians					0.0																				

Ferry Rd at Meridian Lane 5841.915 LPC Old Dominion 6 AM - 9 AM, 4 PM - 7 PM GHA Mio

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ferry Rd at Meridian Lane Site Code: Start Date: 09/09/2021 Page No: 1

Turning Movement Data

_			1						Ĺ		iNg M	ovem –	i urning Movement Data 	ala	1	,		_			Ĺ			_
			Southbound	ound					Westbound	pun					Northbound	pu					Eastbound	D		
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right P	Peds A	App. U-	U-Turn	Left	Thru R	Right Peds	ls App.	I Int. Total
6:00 AM	0	0	0	0	0	0	0	0	34	-	0	35	0	0	0	0	0	0	0	0	50	0 0	20	85
6:15 AM	0	0	0	0	0	0	0	0	39	0	0	39	0	0	0	1	0	1	0	0	72	0 0	72	112
6:30 AM	0	0	0	1	0	1	0	0	43	2	0	45	0	1	0	0	1	1	0	1	66	0 0	100	147
6:45 AM	0	0	0	0	0	0	0	0	52	1	0	53	0	0	0	0	0	0	0	2	126	0 0	128	181
Hourly Total	0	0	0	1	0	1	0	0	168	4	0	172	0	1	0	1	1	2	0	3	347	0 0	350	525
7:00 AM	0	0	0	1	0	1	0	0	53	0	0	53	0	0	0	0	1	0	0	0	131	0 0	131	185
7:15 AM	0	0	0	0	0	0	0	0	43	0	0	43	0	0	0	0	0	0	0	0	132	0 0	132	175
7:30 AM	0	0	0	0	0	0	0	0	51	1	0	52	0	_	0	0	0	1	0	0	144	0 0	144	197
7:45 AM	0	0	0	0	0	0	0	0	53	0	0	53	0	0	0	0	0	0	0	0	122	0 0	122	175
Hourly Total	0	0	0	1	0	1	0	0	200	1	0	201	0	1	0	0	1	1	0	0	529	0 0	529	732
8:00 AM	0	0	0	0	0	0	0	0	20	1	0	51	0	0	0	0	0	0	0	0	86	0 0	86	149
8:15 AM	0	1	0	0	0	1	0	0	65	1	0	99	0	0	0	1	0	1	0	0	109	0 0	109	177
8:30 AM	0	0	0	0	0	0	0	1	43	1	0	45	0	0	0	0	0	0	0	0	98	0 0	98	143
8:45 AM	0	0	0	0	0	0	1	0	40	1	0	42	0	0	0	0	0	0	0	0	85	0 0	85	127
Hourly Total	0	_	0	0	0	-	_	-	198	4	0	204	0	0	0	_	0	-	0	0	390	0 0	390	969
*** BREAK ***											,				,		,			,			'	
4:00 PM	0	-	0	0	0	-	0	0	131	0	0	131	0	0	0	0	0	0	0	0	78	1 0	79	211
4:15 PM	0	0	0	0	0	0	0	3	102	0	0	105	0	0	0	0	0	0	0	0	74	0 0	74	179
4:30 PM	0	0	0	0	0	0	_	0	132	0	0	133	0	0	0	_	0	-	0	0	84	2 0		220
4:45 PM	0	0	0	0	0	0	0	0	107	0	0	107	0	0	0	_	0	-	0	0	29	0 0	29	175
Hourly Total	0	_	0	0	0	_	_	3	472	0	0	476	0	0	0	2	0	2	0	0	303	3 0	.,	785
5:00 PM	0	0	0	0	0	0	_	0	146	0	0	147	0	0	0	0	0	0	0	0	89	0 0		236
5:15 PM	0	0	0	0	0	0	0	0	132	0	0	132	0	0	0	0	0	0	0	0	92	0 0		208
5:30 PM	0	0	0	2	0	2	0	0	148	0	0	148	0	0	0	0	_	0	0	0	92	0 0		242
5:45 PM	0	0	0	0	0	0	0	-	135	0	0	136	0	0	0	_	0	-	0	0	79	0 0		216
Hourly Total	0	0	0	2	0	2	_	-	561	0	0	563	0	0	0	_	_	-	0	0	336	0 0	336	905
6:00 PM	0	0	0	0	0	0	_	0	116	0	0	117	0	0	0	-	0	-	0	0	61	0 0	61	179
6:15 PM	0	0	0	0	0	0	0	0	86	0	0	86	0	0	0	0	0	0	0	0	84	0 0	84	182
6:30 PM	0	0	0	0	0	0	0	0	29	0	0	59	0	0	0	_	0	_	0		52	0 0		112
6:45 PM	0	0	0	0	0	0	0	-	09	0	0	61	0	0	0	_	0	-	0	0	53	0	53	115
Hourly Total	0	0	0	0	0	0	-	_	333	0	0	335	0	0	0	3	0	3	0	0	250	0	250	588
Grand Total	0	2	0	4	0	9	4	9	1932	6	0	1951	0	2	0	8	3	10	0	3 2	2155	3	2161	4128
Approach %	0.0	33.3	0.0	2.99	,	1	0.2	0.3	0.66	0.5		-	0.0	20.0	0.0	80.0			0.0	0.1	99.7	0.1	1	
Total %	0.0	0.0	0.0	0.1		0.1	0.1	0.1	46.8	0.2	,	47.3	0.0	0.0	0.0	0.2	-	0.2	0.0	0.1	52.2	0.1	52.3	
Lights	0	2	0	4		9	4	2	1763	7	,	1779	0	2	0	8		10	0	2 1	1995	3	2000	3795
% Lights	,	100.0		100.0		100.0	100.0	83.3	91.3	77.8	,	91.2		100.0		100.0	-	100.0	- د	66.7	92.6	100.0	92.5	91.9
Mediums	0	0	0	0		0	0	-	34	0	,	35	0	0	0	0	,	0	0	0	41	- 0	41	76
% Mediums		0.0		0.0	-	0.0	0.0	16.7	1.8	0.0	,	1.8		0.0		0.0	1	0.0		0.0	1.9	0.0	1.9	1.8

249	0.9	8	0.2				,
118	5.5	2	0.1				
	-	1		-	100.0	0	0.0
0	0.0	0	0.0	,			
117	5.4	2	0.1	,	,		
1	33.3	0	0.0				
0	-	0	-	-	-	-	-
0	0.0	0	0.0	-	-	-	
	-	-	-	_	33.3	2	2.99
0	0.0	0	0.0	,	,		
0	-	0		,			
0	0.0	0	0.0				,
0	-	0	-	-	-	-	
131	6.7	9	0.3	,	,		
	-	-	-	0	,	0	
2	22.2	0	0.0	,			
129	6.7	9	0.3	,	,		
0	0.0	0	0.0	,	,		
0	0:0	0	0:0	•	,	-	
0	0.0	0	0.0				
		-		0	,	0	
0	0.0	0	0.0				
0		0					
0	0.0	0	0.0				
0	-	0	-	-	-	-	
Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Bicycles on Crosswalk	% Bicycles on Crosswalk	Pedestrians	% Pedestrians

5412.900 Everton Warrenville IL 59 at Ferry Rd 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 Ibeckham@gha-engineers.com

Count Name: IL 59 at Ferry Rd Site Code: Start Date: 06/05/2018 Page No: 1

Turning Movement Data

		Int. Total	591	784	1005	1032	3412	912	1100	1214	1121	4347	1044	1017	946	863	3870		919	939	1147	1040	4045	1073	1109	1200	1213	4595	1197	1340	1180	1155	4872	25141	_		23554	93.7	209	2.4	Cac
_		App. Total	87	104	153	163	202	190	184	245	236	855	158	200	139	134	631		78	82	141	81	382	101	62	101	101	382	120	101	114	77	412	3169		12.6	3026	95.5	55	1.7	00
		Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	_	0	0	0	_	_	,	,				,	
	r Kd	Right	21	14	21	20	92	31	25	34	56	116	20	24	20	19	83		24	30	69	24	147	38	13	34	31	116	39	33	24	56	122	099	20.8	5.6	564	85.5	27	4.1	00
	Ferry Rd Eastbound	Thru	49	89	86	119	334	133	136	168	180	617	120	151	103	103	477		39	36	44	43	162	46	51	45	44	186	09	49	63	32	204	1980	62.5	7.9	1963	99.1	12	9.0	L
		Left	17	22	34	24	26	26	23	43	30	122	18	25	16	12	71		15	16	28	14	73	17	15	22	56	80	21	19	27	19	98	529	16.7	2.1	499	94.3	16	3.0	4.4
		U-Turn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0		c
_		App. Total	270	335	385	376	1366	319	395	363	329	1406	385	316	341	322	1364		301	296	327	303	1227	334	323	360	389	1406	318	456	348	386	1508	8277	•	32.9	7627	92.1	211	2.5	400
		Peds	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	2	0	-	0	8	3	,		-	-		,	
	pun	Right	23	29	43	22	150	34	56	52	51	193	74	09	45	42	221		20	19	18	14	71	27	14	17	70	78	13	16	14	14	22	770	9.3	3.1	727	94.4	21	2.7	77
	IL 59 Northbound	Thru	216	272	290	275	1053	255	286	283	227	1051	280	229	264	248	1021		234	244	281	244	1003	266	267	291	335	1159	253	366	268	282	1169	6456	78.0	25.7	5952	92.2	169	2.6	200
זומ		Left	29	34	20	45	158	26	53	27	20	156	31	25	28	29	113		45	32	27	39	143	40	38	49	30	157	38	69	61	81	249	926	11.8	3.9	873	89.4	21	2.2	Co
ב ב		U-Turn	2	0	2	1	2	4	0	_	_	9	0	2	4	3	6		2	_	_	9	10	-	4	3	4	12	14	2	5	6	33	75	6.0	0.3	75	100.0	0	0.0	0
- D		App.	37	47	105	94	283	117	109	153	116	495	93	118	83	106	400	-	191	234	217	224	998	285	303	352	306	1246	380	309	297	247	1233	4523	-	18.0	4388	0.76	78	1.7	67
ו שווווון ואוסעכוווכווו במנמ		Peds	0	0	0	1	1	0	0	2	0	2	0	0	0	0	0	-	0	0	0	0	0	0	0	_	0	_	0	0	0	0	0	4		,	-	-			
5	nd d	Right	21	28	29	54	170	72	75	77	58	282	54	63	46	53	216		63	82	91	69	305	80	83	66	28	346	91	06	81	73	335	1654	36.6	9.9	1592	96.3	41	2.5	24
	Ferry Rd Westbound	Thru	11	16	30	31	88	28	21	51	45	145	30	29	24	31	114		77	93	29	114	351	133	136	155	143	292	186	154	146	120		1871		7.4	1838		25	1.3	٥
		Left	5	3	7	6	24	17	13	25	13	68	6	26	12	22	69		51	59	59	41	210	72					_			54	289	. 666	22.0	3.9	953	0.96	12	1.2	90
		U-Turn	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1		0	0	0	0	0	0	0	0			_	-	-	0	3	5	0.1	0.0	5	100.0	0	0.0	0
_		App. Total U	197	298	362	399	1256	286	412	453	440	1591	408	383	383	301	1475	-	349	327	462	432	1570	353	404	387	417	1561	379	474	421	445	1719	9172	-	36.5	8513	92.8	263	2.9	306
		Peds 1	0	0	0	1	1	0	0	_	0	1	0	0	0	0	0	-	0	0	0	0	0	0	0							0	0	2		1	- 8	-			
	P	Right	11	8	24	26	69	2	16	11	13	42	17	14	15	14	09	-	19	17	16	23	75	14	15	17	24	20	20	23	23	18	84	400	4.4	1.6	381	95.3	10	2.5	0
	IL 59 Southbound	Thru	156	234	277	296	963	225	303	349	314	1191	286	262	262	226	1036	-	289	267	379	340	1275	292				01				347	,	7078	77.2	28.2	6489	91.7	225		36.1
		Left	30 1	56 2	61 2	77 2	224 6	59 2	93 3	93 3	113 3	358 1	103 2	107 2	106 2	61 2	377 1		41 2	43 2	67 3	69	220 1:	47 2								80	284 1:	1692 7	18.4 7	6.7 2	1643 6	97.1	28 2	1.7	21 2
		U-Turn L	0	0	0	. 0	0 2	0	0	0	0 1	0 3	2 1	0 1	0 1	0			, 0	0	0	0	0 2	0	0							0	0 2	2 16	0.0	0.0	0 16	0.0	0	0.0	,
_							_											***												_						J					
		Start Time	6:00 AM	6:15 AM	6:30 AM	6:45 AM	Hourly Tota	7:00 AM	7:15 AM	7:30 AM	7:45 AM	Hourly Tota	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Tota	*** BREAK **	3:00 PM	3:15 PM	3:30 PM	3:45 PM	Hourly Total	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Total	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Tota	Grand Total	Approach %	Total %	Lights	% Lights	Mediums	% Mediums	Articulated Trucks

APPENDIX C Crash Summary Map

Appendix C - IDOT Crash Data (2016-2020)

Proposed Warehouse Development Naperville, IL

APPENDIX D CMAP Traffic Projections

433 West Van Buren Street Suite 450 Chicago, IL 60607

> 312-454-0400 cmap.illinois.gov

September 7, 2021

Daniel P. Brinkman, P.E., PTOE Assistant Director of Transportation Services Gewalt Hamilton Associates 625 Forest Edge Drive Vernon Hills, IL 60061

Subject: Ferry Road @ Frieder Lane

IDOT, DuPage DOT

Dear Mr. Brinkman:

In response to a request made on your behalf and dated September 7, 2021, we have developed year 2050 average daily traffic (ADT) projections for the subject location.

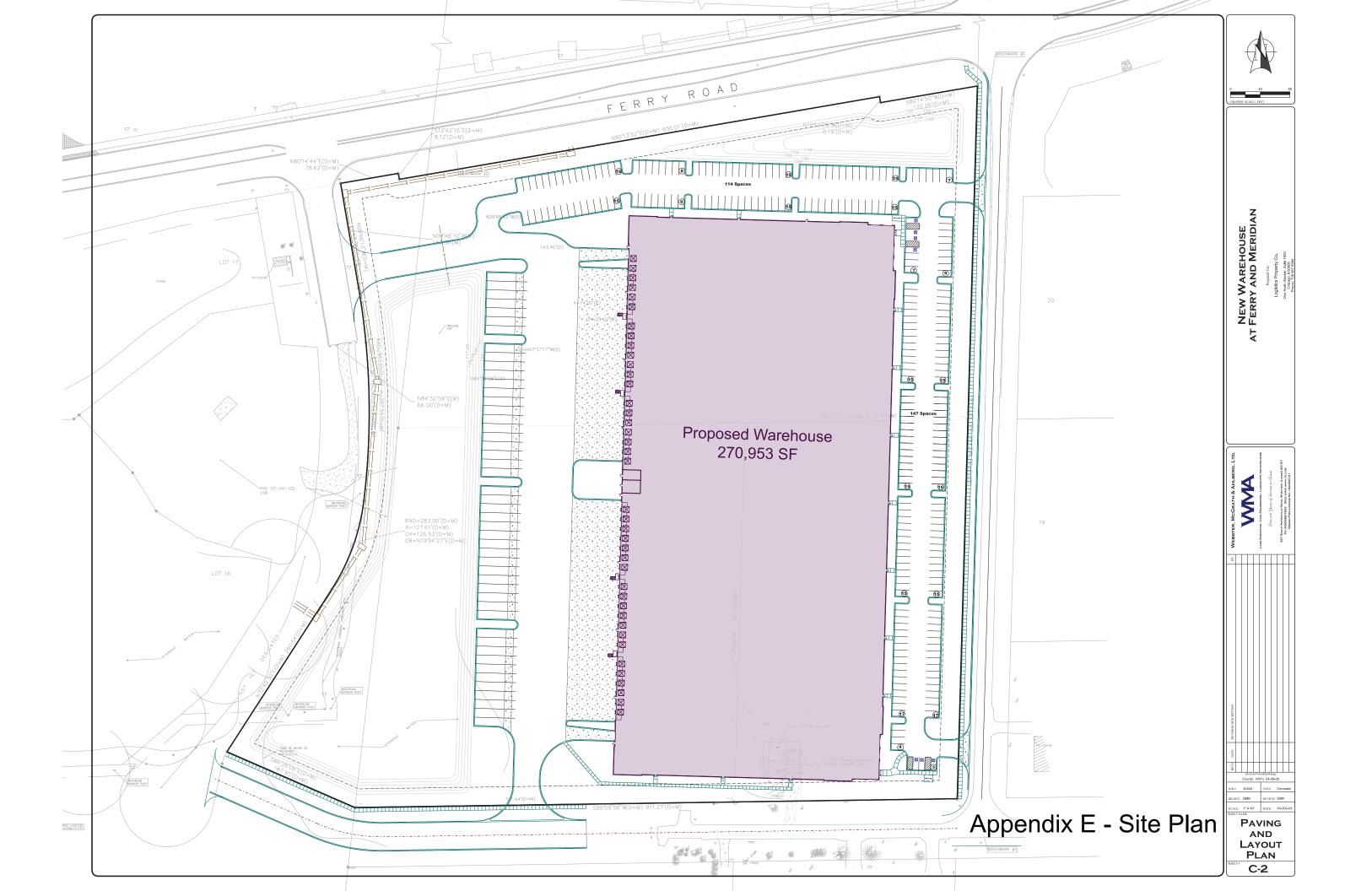
ROAD SEGMENT	2016 ADT	Year 2050 ADT
Ferry Road east of Eola Road	10,500	15,100

Traffic projections are developed using existing ADT data provided in the request letter and the results from the June 2021 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2050 socioeconomic projections and assumes the implementation of the ON TO 2050 Comprehensive Regional Plan for the Northeastern Illinois area. The provision of this data in support of your request does not constitute a CMAP endorsement of the proposed development or any subsequent developments.

If you have any questions, please call me at (312) 386-8806.

Sincerely,

Jose Rodriguez, PTP, AICP


Senior Planner, Research & Analysis

cc: Rios (IDOT)

 $\verb|\2021_CY_TrafficForecast| Naperville | \verb|\du-42-21| | du-42-21| | du-42-21$

APPENDIX E September 24, 2021 Site Plan

APPENDIX F ITE Trip Generation Manual Excerpts

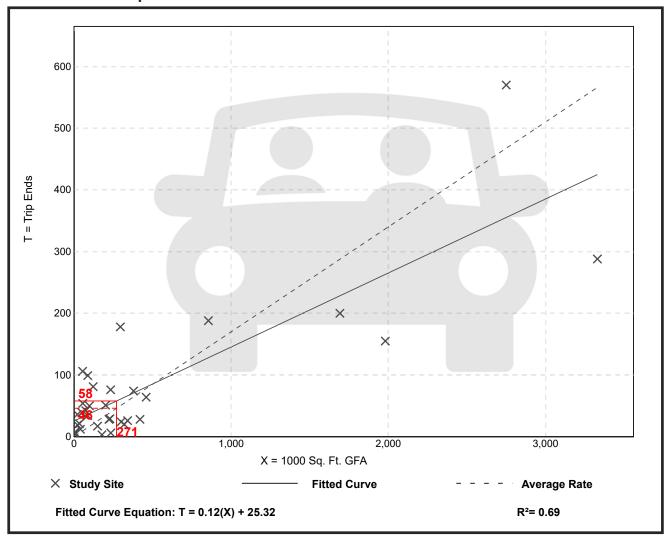
Warehousing (150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

General Urban/Suburban Setting/Location:


Number of Studies: Avg. 1000 Sq. Ft. GFA: 451

Directional Distribution: 77% entering, 23% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.02 - 1.93	0.20

Data Plot and Equation

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

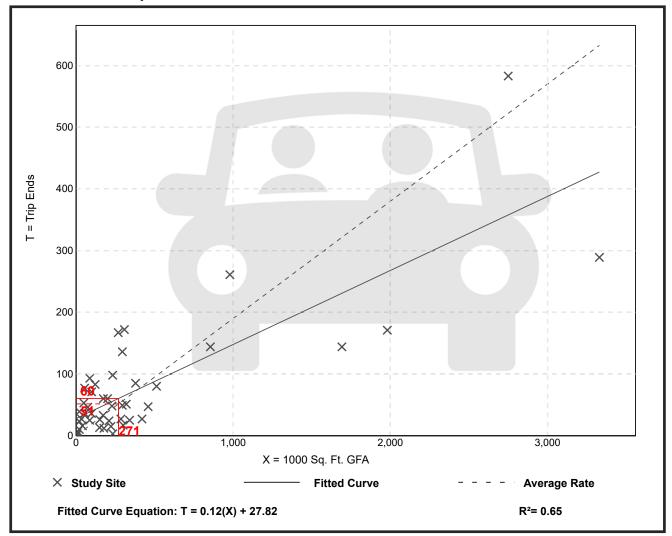
Warehousing (150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

General Urban/Suburban Setting/Location:


Number of Studies: Avg. 1000 Sq. Ft. GFA: 400

Directional Distribution: 27% entering, 73% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.19	0.01 - 1.80	0.18

Data Plot and Equation

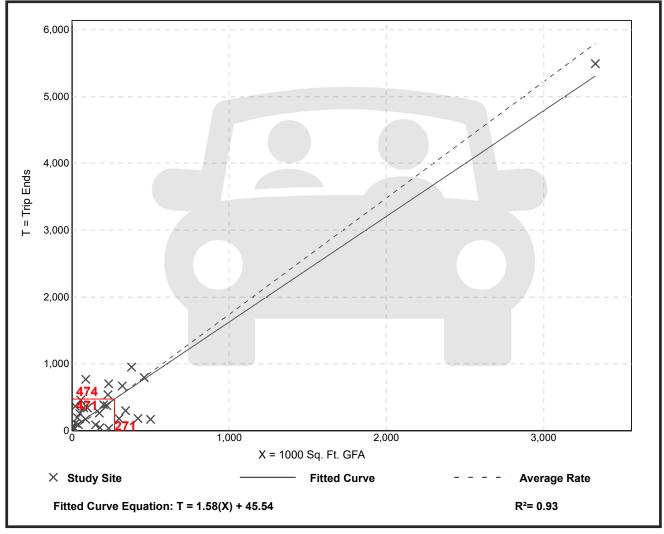
Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

Warehousing (150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: 29 Avg. 1000 Sq. Ft. GFA: 285

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.74	0.15 - 16.93	1.55

Data Plot and Equation

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

Land Use: 150 Warehousing

Description

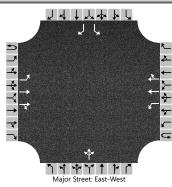
A warehouse is primarily devoted to the storage of materials, but it may also include office and maintenance areas. High-cube transload and short-term storage warehouse (Land Use 154), high-cube fulfillment center warehouse (Land Use 155), high-cube parcel hub warehouse (Land Use 156), and high-cube cold storage warehouse (Land Use 157) are related uses.

Additional Data

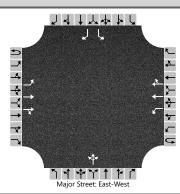
Time-of-day distribution data for this land use are presented in Appendix A. For the 13 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 11:30 a.m. and 12:30 p.m. and 3:00 and 4:00 p.m., respectively.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Connecticut, Minnesota, New Jersey, New York, Ohio, Oregon, Pennsylvania, and Texas.

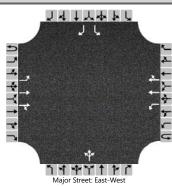
Source Numbers


184, 331, 406, 411, 443, 579, 583, 596, 598, 611, 619, 642, 752, 869, 875, 876, 914, 940

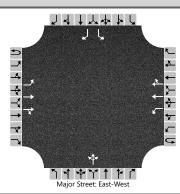
APPENDIX G Capacity Analysis Worksheets



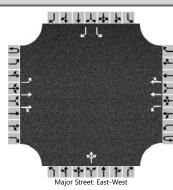
	Appendix G - HCS Reports							
General Information		Site Information						
Analyst	JL	Intersection	FERRY @ FRIEDERS					
Agency/Co.	GHA	Jurisdiction	IDOT					
Date Performed	9/23/2021	East/West Street	FERRY ROAD					
Analysis Year	2021	North/South Street	FRIEDERS LANE					
Time Analyzed	EXISTING AM PEAK	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	OLD DOMINION							


					Maj	or Street: Ea	st-West									
Vehicle Volumes and Adjustments																
Approach	Τ	Eastb	ound			Westl	bound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	24	589	5	0	17	247	12		2	0	26		3		3
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized									No							
Median Type Storage		Left Only 8														
Critical and Follow-up H	itical and Follow-up Headways															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		26				18					30			3		3
Capacity, c (veh/h)		1271				929					636			551		878
v/c Ratio		0.02				0.02					0.05			0.01		0.00
95% Queue Length, Q ₉₅ (veh)		0.1				0.1					0.2			0.0		0.0
Control Delay (s/veh)		7.9				9.0					10.9			11.6		9.1
Level of Service (LOS)		А				А					В			В		А
Approach Delay (s/veh)	0.3				0.6			10.9				10.3				
Approach LOS											В		В			
																-

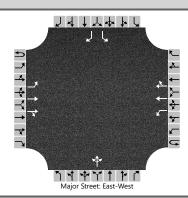
	Appendix G - HCS Reports							
General Information		Site Information						
Analyst	JL	Intersection	FERRY @ FRIEDERS					
Agency/Co.	GHA	Jurisdiction	IDOT					
Date Performed	9/23/2021	East/West Street	FERRY ROAD					
Analysis Year	2028	North/South Street	FRIEDERS LANE					
Time Analyzed	NO BUILD AM PEAK	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	OLD DOMINION							


Vehicle Volumes and Adj	iustme	nts															
Approach		Eastb	ound			Westl	bound		Northbound					South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	TR			LTR			L		R	
Volume (veh/h)	0	26	635	5	0	18	266	13		2	0	26		3		3	
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3	
Proportion Time Blocked																	
Percent Grade (%)										(0			(0		
Right Turn Channelized														Ν	lo		
Median Type Storage				Left	Only						8						
Critical and Follow-up H	eadwa	adways															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9	
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	28				20					30			3		3	
Capacity, c (veh/h)		1247				889					610			526		864	
v/c Ratio		0.02				0.02					0.05			0.01		0.00	
95% Queue Length, Q ₉₅ (veh)		0.1				0.1					0.2			0.0		0.0	
Control Delay (s/veh)		8.0				9.1					11.2			11.9		9.2	
Level of Service (LOS)		А				А					В			В		А	
Approach Delay (s/veh)		0.3				0.6			11.2				10.5				
Approach LOS											В		В				

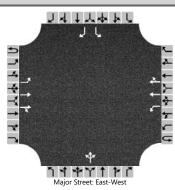
	Appendix G - HCS Reports		
General Information		Site Information	
Analyst	JL	Intersection	FERRY @ FRIEDERS
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	9/23/2021	East/West Street	FERRY ROAD
Analysis Year	2028	North/South Street	FRIEDERS LANE
Time Analyzed	TOTAL AM PEAK	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	OLD DOMINION		


				iviaj	or street. La	31-VVC31										
ustme	nts															
	Eastb	ound			Westbound			Northbound				Southbound				
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	2	0	0	1	2	0		0	1	0		1	0	1	
	L	Т	TR		L	Т	TR			LTR			L		R	
0	26	650	8	0	23	269	13		4	0	32		3		3	
3	3			3	3				3	3	3		3		3	
										0			(0		
												No				
	Left Only						8									
	4.1				4.1				7.5	6.5	6.9		7.5		6.9	
	4.16				4.16				7.56	6.56	6.96		7.56		6.96	
	2.2				2.2				3.5	4.0	3.3		3.5		3.3	
	2.23				2.23				3.53	4.03	3.33		3.53		3.33	
d Leve	l of S	ervice														
	28				25					39			3		3	
	1244				874					582			508		862	
	0.02				0.03					0.07			0.01		0.00	
	0.1				0.1					0.2			0.0		0.0	
	8.0				9.2					11.6			12.1		9.2	
	А				А					В			В		Α	
	0	.3			0	.7		11.6				10.7				
										В		В				
	0 1U 0 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	U L 1U 1 0 1 0 26 3 3 3 eadways 4.1 4.16 2.2 2.23 d Level of Service of Se	Eastbound U L T 1U 1 2 0 1 2 L T 0 26 650 3 3 3 A A A A A A A A A A A A A A A A	Eastbound U L T R 1U 1 2 3 0 1 2 0 L T TR 0 26 650 8 3 3 3 Left eadways 4.1 4.16 2.2 2 2.23 d Level of Service 28 1244 0.02 0.1 8.0 A	Eastbound U L T R U 1U 1 2 3 4U 0 1 2 0 0 L T TR 0 26 650 8 0 3 3 3 3 3 3 Left Only Padways 4.1 4.16 4.16 2.2 2 2.23 D Level of Service 28 1244 0.02 0 0.1 8.0	Eastbound Westle U	Eastbound Westbound U L T R U L T 1U 1 2 3 4U 4 5 0 1 2 0 0 1 2 L T TR L T 0 26 650 8 0 23 269 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Eastbound Westbound U	Eastbound Westbound U	Eastbound Westbound North	Eastbound Westbound Northbound	Eastbound Westbound Northbound U	Eastbound Westbound Northbound	Eastbound	Southburs Southburs Southburs Southburs Southburs	

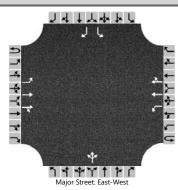
	o-Control Report	Appendix G - HCS Reports						
General Information		Site Information						
Analyst	JL	Intersection	FERRY @ FRIEDERS					
Agency/Co.	GHA	Jurisdiction	IDOT					
Date Performed	9/23/2021	East/West Street	FERRY ROAD					
Analysis Year	2021	North/South Street	FRIEDERS LANE					
Time Analyzed	EXISTING PM PEAK	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	OLD DOMINION							


Vehicle Volumes and Adj	justme	nts															
Approach		Eastb	ound			Westl	bound		Northbound					South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	TR			LTR			L		R	
Volume (veh/h)	0	4	324	2	0	16	665	2		4	0	8		12		12	
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3	
Proportion Time Blocked																	
Percent Grade (%)											0			(0		
Right Turn Channelized														Ν	lo		
Median Type Storage				Left	Only							8					
Critical and Follow-up H	eadwa	adways															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9	
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	T	4				17					13			13		13	
Capacity, c (veh/h)		867				1194					712			355		631	
v/c Ratio		0.01				0.01					0.02			0.04		0.02	
95% Queue Length, Q ₉₅ (veh)		0.0			Ì	0.0					0.1		Ì	0.1		0.1	
Control Delay (s/veh)		9.2				8.1					10.1			15.5		10.8	
Level of Service (LOS)		А				А					В			С		В	
Approach Delay (s/veh)		0.1				0.2			10.1				13.2				
Approach LOS											В			-	В		

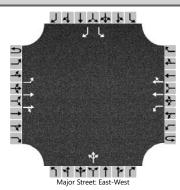
	Appendix G - HCS Reports							
General Information		Site Information						
Analyst	JL	Intersection	FERRY @ FRIEDERS					
Agency/Co.	GHA	Jurisdiction	IDOT					
Date Performed	9/23/2021	East/West Street	FERRY ROAD					
Analysis Year	2028	North/South Street	FRIEDERS LANE					
Time Analyzed	NO BUILD PM PEAK	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	OLD DOMINION							


		,														
Vehicle Volumes and Adj	ustme	nts														
Approach	Т	Eastk	oound			Westl	bound Northbound						Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	4	349	2	0	17	717	2		4	0	8		12		12
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Left	Only							8	8			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T	4				18					13			13		13
Capacity, c (veh/h)		825				1166					690			326		605
v/c Ratio		0.01				0.02					0.02			0.04		0.02
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1			0.1		0.1
Control Delay (s/veh)		9.4				8.1					10.3			16.5		11.1
Level of Service (LOS)		A				A			В					С		В
Approach Delay (s/veh)		0.1					0.2			10.3				13.8		
Approach LOS									ВВВ							

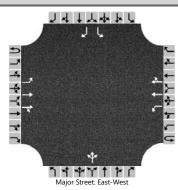
	o-Control Report	Appendix G - HCS Reports	
General Information		Site Information	
Analyst	JL	Intersection	FERRY @ FRIEDERS
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	9/23/2021	East/West Street	FERRY ROAD
Analysis Year	2028	North/South Street	FRIEDERS LANE
Time Analyzed	TOTAL PM PEAK	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	OLD DOMINION		


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	oound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	4	353	4	0	19	730	2		9	0	13		12		12
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Left	Only				8							
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T	4				21					24			13		13
Capacity, c (veh/h)		815				1160					660			317		599
v/c Ratio		0.01				0.02					0.04			0.04		0.02
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1			0.1		0.1
Control Delay (s/veh)		9.4				8.2					10.7			16.8		11.1
Level of Service (LOS)		A				A			В					С		В
Approach Delay (s/veh)		0.1 0.2						10.7				14.0				
Approach LOS						В В										

	Appendix G - HCS Reports		
General Information		Site Information	
Analyst	JL	Intersection	FERRY @ MERIDIAN
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	9/23/2021	East/West Street	FERRY ROAD
Analysis Year	2021	North/South Street	MERIDIAN ROAD
Time Analyzed	EXISTING PM PEAK	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	OLD DOMINION		

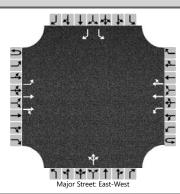

		<u> </u>														
Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	0	344	0	0	1	681	0		0	0	1		0		2
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Left	Only								5			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		0				1					1			0		2
Capacity, c (veh/h)		856				1174					820			364		624
v/c Ratio		0.00				0.00					0.00			0.00		0.00
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			0.0		0.0
Control Delay (s/veh)		9.2				8.1					9.4			14.9		10.8
Level of Service (LOS)		A				A			A					В		В
Approach Delay (s/veh)		0.0				0.0			9.4				10.8			
Approach LOS									A B							

	HCS7 Two-Way Stop-Control Report								
General Information		Site Information							
Analyst	JL	Intersection	FERRY @ MERIDIAN						
Agency/Co.	GHA	Jurisdiction	IDOT						
Date Performed	9/23/2021	East/West Street	FERRY ROAD						
Analysis Year	2028	North/South Street	MERIDIAN ROAD						
Time Analyzed	NO BUILD AM PEAK	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	OLD DOMINION								


		<u> </u>														
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	2	662	0	0	0	295	2		1	0	0		0		1
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Left	Only							į	5			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		2				0					1			0		1
Capacity, c (veh/h)		1227				871					373			578		852
v/c Ratio		0.00				0.00					0.00			0.00		0.00
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			0.0		0.0
Control Delay (s/veh)		7.9				9.1					14.7			11.2		9.2
Level of Service (LOS)		A				A			В					В		А
Approach Delay (s/veh)		0.0				0.0			14.7				9.2			
Approach LOS									В А							

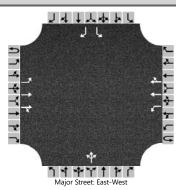
	HCS7 Two-Way Stop-Control Report								
General Information		Site Information							
Analyst	JL	Intersection	FERRY @ MERIDIAN						
Agency/Co.	GHA	Jurisdiction	IDOT						
Date Performed	9/23/2021	East/West Street	FERRY ROAD						
Analysis Year	2028	North/South Street	MERIDIAN ROAD						
Time Analyzed	TOTAL AM PEAK	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	OLD DOMINION								

		·														
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	2	668	15	0	22	300	2		4	0	2		0		1
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)											0			(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Left	Only								5			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		2				24					7			0		1
Capacity, c (veh/h)		1221				854					424			536		848
v/c Ratio		0.00				0.03					0.02			0.00		0.00
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.0			0.0		0.0
Control Delay (s/veh)		8.0				9.3					13.6			11.7		9.2
Level of Service (LOS)		A				A			В					В		А
Approach Delay (s/veh)		0	.0		0.6			13.6				9.2				
Approach LOS									В А							


	Appendix G - HCS Reports		
General Information		Site Information	
Analyst	JL	Intersection	FERRY @ MERIDIAN
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	9/23/2021	East/West Street	FERRY ROAD
Analysis Year	2021	North/South Street	MERIDIAN ROAD
Time Analyzed	EXISTING PM PEAK	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	OLD DOMINION		

Approach		Eastb	ound			Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	TR			LTR			L		R
Volume (veh/h)	0	0	344	0	0	0	274	2		0	0	1		0		2
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized														N	lo	
Median Type Storage				Left	Only							į	5			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		0				0					1			0		2
Capacity, c (veh/h)		1251				1174					820			660		866
v/c Ratio		0.00				0.00					0.00			0.00		0.00
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			0.0		0.0
Control Delay (s/veh)		7.9				8.1					9.4			10.5		9.2
Level of Service (LOS)		A				A			A					В		А
Approach Delay (s/veh)		0.0 0.0						-	9.4				9.2			
Approach LOS									A A							

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.


	Appendix G - HCS Reports		
General Information		Site Information	
Analyst	JL	Intersection	FERRY @ MERIDIAN
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	9/23/2021	East/West Street	FERRY ROAD
Analysis Year	2028	North/South Street	MERIDIAN ROAD
Time Analyzed	NO BUILD PM PEAK	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	OLD DOMINION		

Vehicle Volumes and Adj	justme	nts															
Approach		Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	TR			LTR			L		R	
Volume (veh/h)	0	0	369	0	0	1	734	0		1	0	0		0		2	
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3	
Proportion Time Blocked																	
Percent Grade (%)										0			0				
Right Turn Channelized													No				
Median Type Storage		Left Only							5								
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9	
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		0				1					1			0		2	
Capacity, c (veh/h)		814				1147					530			336		598	
v/c Ratio		0.00				0.00					0.00			0.00		0.00	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			0.0		0.0	
Control Delay (s/veh)		9.4				8.1					11.8			15.7		11.0	
Level of Service (LOS)		А				Α					В			С		В	
Approach Delay (s/veh)		0.0			0.0				11.8					11.0			
Approach LOS											В		В				

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

	Appendix G - HCS Reports					
General Information		Site Information				
Analyst	JL	Intersection	FERRY @ MERIDIAN			
Agency/Co.	GHA	Jurisdiction	IDOT			
Date Performed	9/23/2021	East/West Street	FERRY ROAD			
Analysis Year	2028	North/South Street	MERIDIAN ROAD			
Time Analyzed	TOTAL PM PEAK	Peak Hour Factor	0.92			
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25			
Project Description	OLD DOMINION					

Vehicle Volumes and Adj	justme	nts															
Approach		Eastbound				Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	TR			LTR			L		R	
Volume (veh/h)	0	0	374	4	0	9	736	0		13	0	22		0		2	
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3		3	
Proportion Time Blocked																	
Percent Grade (%)										0				0			
Right Turn Channelized													No				
Median Type Storage		Left Only							5								
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5		6.9	
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56		6.96	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53		3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		0				10					38			0		2	
Capacity, c (veh/h)		812				1137					664			325		597	
v/c Ratio		0.00				0.01					0.06			0.00		0.00	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2			0.0		0.0	
Control Delay (s/veh)		9.4				8.2					10.8			16.1		11.1	
Level of Service (LOS)		А				А					В			С		В	
Approach Delay (s/veh)		0.0			0.1				10.8				11.1				
Approach LOS											В		В				

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.