Attachment G

FOCUSED PHASE II ENVIRONMENTAL INVESTIGATION

Performed For:

Brian Caput
City of Aurora Development Services
1 South Broadway – 3rd Floor
Aurora, IL 60505

On a Site Located at:

115 West Indian Trail Aurora, IL 60506

By:

Gabriel Environmental Services 1421 North Elston Avenue Chicago, Illinois 60642

Submitted on August 27, 2015

by:

Chris Benson
Project Manager

Reviewed By:

John Polich, P President

Project #0701544

Chicago

1421 N. Elston Avenue Chicago, Illinois 60642 Phone: (773) 486-2123 Fax: (773) 486-0004 Mt. Prospect

500 W. Central Road Mt. Prospect. IL 60056 Phone: (847) 259-5533 Fax: (847) 259-5606 Rockford 7431 E. State Street #225 Rockford, IL 61108 Phone: (815) 332-8378

Fax: (815) 332-8377

NW Indiana

8522 Kennedy Avenue Highland, IN 46322 Phone: (219) 972-1110 Fax: (219) 972-1211 Madison, WI

3700 Commerce Drive Madison, WI 53719 Phone: (608) 826-4827 Fax: (608) 836-0817 SE Wisconsin 1500 S. Sylvania Avenue Suite 112 Startevant, WI 53177 Phone: (262) 886-9505 Fax: (262) 886-9510

FOCUSED PHASE II ENVIRONMENTAL INVESTIGATION 115 West Indian Trail Aurora, IL 60506

Table of Contents

Section		Page
1. Executive	Summary	1
2. Site Backg	ground	2
3.1 St 3.2 St 3.3 Fi	absurface Soil Borings ample Collection feld Screening Method ample Selection and Laboratory Analysis	2-4
	olatile Organic Compounds Results VOC Results	4-5
5. Statement	of Limitations	6
Appendix A	Soil Boring Location Map Analytical Results	
Appendix B	Soil Boring Logs	
Appendix C	Phase II Executive Summary	

1. Executive Summary

Gabriel Environmental Services (Gabriel) was retained to conduct a Focused Phase II Environmental Investigation at the property located at 115 West Indian Trail in Aurora, Illinois. This investigative action was performed to address the conditions of the subsurface soils on the property based on contamination found during a Phase II conducted by Gabriel in July of 2015. See Appendix C for the Phase II Executive Summary.

A total of four (4) soil borings were advanced into the subsurface soils at the subject property on August 5, 2015. See Soil Boring Location Map in Appendix A for boring locations. Field screening of samples collected from the borings, including the use of a Photoionization Detector (PID), revealed suspect contamination in representative soil samples from soil borings C-1 and C-3.

USEPA Method 8260: Volatile Organic Compound (VOC) analysis revealed 1,1,2,2-Tetrachloroethane above the IEPA's strictest remediation objectives in soil sample C-3 (5'). Complete Laboratory Results are contained in Appendix A.

USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis revealed Benzo(a)pyrene and 2-Methylnaphthalene above the IEPA's strictest remediation objectives in soil sample C-3 (5'). Complete Laboratory Results are contained in Appendix A.

Previously, USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis revealed Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Carbazole, and Dibenzo(a,h)anthracene above the IEPA's strictest remedation objectives in soil sample B-6 (1'). Complete Laboratory Results are contained in Appendix A.

Gabriel recommends that, if the building will be demolished, the area with Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Carbazole, and Dibenzo(a,h)anthracene, 1,1,2,2-Tetrachloroethane, and 2-Methylnaphthalene be removed and properly disposed of by a licensed contractor. If the building were to stay as is, there is no immenant danger, but procurement of a NFR is recommended.

Project #0701544

2. Site Background

The subject property consists of an approximate 4.85-acre (211,266-square foot), irregular-shaped (generally rectangular in shape) parcel of land, located along the north side of West Indian Trail and immediately west of the Fox River. The subject property is improved with an approximate 160,000-square foot irregularly-shaped, one-masonry block, brick metal panel constructed industrial building.

3. Methodology

During the course of this Focused Phase II Environmental Investigation performed at 115 W Indian Trail in Aurora on August 5, 2015, soil samples were procured to evaluate the environmental conditions on the property. Four (4) soil borings, labeled C-1 through C-4, were performed.

3.1 Subsurface Soil Borings

Prior to any sampling, utility locations were marked by the appropriate authorities utilizing Joint Underground Locating Information for Excavators (JULIE), a service provided by the public utilities of the State of Illinois. JULIE was informed to notify utilities of digging and allow for marking of the utilities underground lines.

Four (4) soil borings were advanced into the subsurface soils at the subject property on July 2, 2015. See Soil Boring Location Map in Appendix A for boring locations. Soil borings were advanced to the following depths Below Surface Grade (BSG): C-1 (4'), C-2 (13'), C-3 (10'), and C-4 (7').

3.2 Sample Collection

Representative soil samples were collected at 5' intervals from a 2.125" diameter Geoprobe Large Core sampling tube. The sampling tube was pushed through the subsurface sediments with a truck mounted Geoprobe 6600 as a continuous soil sample was procured to the desired depth. Soil samples were collected directly from the Acetate insert liner of the sampling tube.

All sampling equipment was then washed with alkaline detergent and rinsed with deionized water between the collections of each sample. Separate Nitrile gloves were used to remove the soil samples from each liner.

Samples submitted for laboratory analysis were transferred from the soil liner to USEPA approved Method 5035 Encore sampler in accordance with Subsection 4.5 of SW-846. Samples were then immediately placed in a cooler packed with ice to preserve the samples during transport to our laboratory, where all laboratory procedures identified in Method 5035 were followed. The Method 5035 is a closed "purge and trap" system that minimizes organic release and sample cross contamination.

Samples were preserved by placing a portion of the soil into 40 ml vials containing sodium bisulfate and methanol respectively. Sample jars are pre weighed and a specified volume of soil is collected for each preservation solution.

3.3 Field Screening Methods

Soil samples collected in the field were screened with a MiniRae® Micro Tip Photoionization Detector (PID) with a 10.6 eV lamp. Soil types were described, and visual and olfactory indications were noted. A portion of each sample was placed into a clean plastic Ziploc® bag. The bag was sealed and placed in the cab of the truck then allowed to warm to the ambient air temperature (approximately 70° F). The probe of the PID was inserted through the seal of the plastic bag to measure the concentration of airborne photoionizable gases present in the area over the soil sample - "head space". The PID readings were used to provide relative levels of contamination in the soil samples. The PID was calibrated in the field prior to field screening.

3.4 Sample Selection and Laboratory Analysis

One (1) soil sample, C-3 (5'), was submitted to the Gabriel Environmental Services Laboratory for USEPA Method 8260: Volatile Organic Compound (VOC) analysis. Samples were chosen for laboratory analysis based on field screening and likelihood of contamination. Complete Laboratory Results are contained in Appendix A.

Four (4) soil samples, C-1 (4'), C-2 (5'), C-4 (5'), and C-3 (5'), were submitted to the Gabriel Environmental Services Laboratory for USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis. Samples were chosen for laboratory analysis based on field screening and likelihood of contamination. Complete Laboratory Results are contained in Appendix A.

4. Data Review

4.1 Volatile Organic Compound (VOC) Results

USEPA Method 8260: Volatile Organic Compound (VOC) analysis utilizes Gas Chromatography and Mass Spectrometry to analyze 69 target volatile compounds including many petroleum and chlorinated compounds. VOC analysis generates a graphic representation called a chromatogram.

One (1) soil sample, C-3 (5'), was submitted to the Gabriel Environmental Services laboratory for USEPA Method 8260: VOC analysis. This revealed 1,1,2,2-Tetrachloroethane above the IEPA's strictest remediation objectives in soil sample C-3 (5'). Complete Laboratory Results are contained in Appendix A.

4.2 Semi-Volatile Organic Compound (SVOC) Results

USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis utilizes Gas Chromatography and Mass Spectrometry to analyze 68 target semi-volatile compounds including many petroleum and chlorinated compounds. SVOC analysis generates a graphic representation called a chromatogram.

Four (4) soil samples, C-1 (4'), C-2 (5'), C-4 (5'), and C-3 (5'), were submitted to the Gabriel Environmental Services Laboratory for USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis. This revealed Benzo(a)pyrene and 2-Methylnaphthalene above the IEPA's strictest remediation objectives in soil sample C-3 (5'). Complete Laboratory Results are contained in Appendix A.

5. Statement of Limitations

The environmental assessment detailed in this report has been performed in accordance with generally accepted methods and practices of the environmental laboratory engineering profession. The scope and depth of this study were as directed, and as agreed to, by the client.

Gabriel uses experienced and trained professionals in attempting to locate and identify hazardous materials or conditions; however, we do not warrant that all such materials have been identified. It is possible that some materials containing a hazardous substance were not visible or accessible to the surveyor or for various other reasons were not sampled.

All findings are based on documentary review, conversations, and analytical data proved by the laboratory as noted in this report. These findings are not to be considered scientific certainties. The intent of this study was to identify environmental concerns, which would be obvious to a professional's skills, standards, and knowledge. This report is not intended to represent an exhaustive research of all potential hazards, which may exist at this site.

This report also does not purport to be representative of future conditions or events. Activities that transpire subsequent to this report, which result in adverse environmental impacts, are not to be construed as relevant to this study.

This report has been performed for the exclusive use of the client. Our report and its findings shall not, in whole or part, be disseminated to any other party, nor be used by any other party without the prior written consent of Gabriel Environmental Services.

GABRIEL

Environmental Services

APPENDIX A

Sampling = 8/5/2015			1	Soil Component of	* Residential Properties	Properties	industrial/©ornmercial	Ommercial	"Gonstruction Worker	n Worker
Parameter	C:1	.C-2 .(5):	C48 8	the GW Ingestion: Exposure Route	Tier1 Ingëstion	Tiera :	Tier 1 : Indestion:	Tier 1 Inhalation	Tier 1 Ti	Tier 1 Inhalation
	<0.330		<0.330	929	4,700		120,000	-	120,000	
Acenaphthylene	<0.330		<0.330	85	2,300		61,000		61,000	2.32
Anthracene	<0.330		<0.330	12,000	23,000		610,000		610,000	i
Benzidine	<0.330		<0.330	0.000002	0.003	0.009	0.02	0.02	0.54	0.02
Benzo [a] anthracene	0.347	0.347 < 0.330	<0.330	2	0.9		8		170	
Benzo [a] pyrene	0.225	0.225 < 0.090	<0.090	8	0.09	I I	0.8		17	
Benzo [b] fluoroanthene	<0.330	<0.330	<0.330	5	0.9	1	8	-	170	
Benzo [k] fluoroanthene	<0.330	<0.330	<0.330	49	6		78		1,700	****
Benzo [g,h,i] perylene	<0.330	<0.330	<0.330	27,000	2,300		61,000		61,000	
Benzoic Acid	<0.330	<0.330	<0.330	400	310,000	-	1,000,000		820,000	
Benzyl alcohol	<0.330		<0.330	3	7,800		200,000	-	61,000	
noxy) methane	<0.330	<0.330	<0.330		-				-	
Bis(2-chloroethyl) ether	<0.330	<0.330	<0.330	0.0004	9.0	0.2	5	25.0	22	0.66
Bis (2-chloroisopropyl) ether	<0.330	<0.330	<0.330	*****					-	i
Bis (2-ethylhexyl) phthalate	<0.330	<0.330	<0.330	3,600	46	31,000	410	31,000	4,100	31,000
4-Bromophenyl phenyl ether	<0.330	<0.330	<0.330		-	***	-	****		
Butyl benzyl phthalate	<0.330	<0.330	<0.330	930	16,000	930	410,000	930	410,000	930
Carbazole	<0.330	<0.330	<0.330	09.0	32		290		6,200	1
4-Chloroaniline	<0.330	<0.330	<0.330	0.7	310	1	8,200	1	820	
4-Chloro-3-methylphenol	<0.330		<0.330	-	,	1	1	ļ		1
2-Chloronaphthalene	<0.330		<0.330	49	6,300	1	160,000	!	41,000	-
2-Chlorophenol	<0.330	<0.330	<0.330	4	390	53,000	10,000	53,000	10,000	53,000
4-Chlorophenyl phenyl ether	<0.330	<0.330	<0.330		1	-	1	l	1	
Chrysene	0.61	0.61 <0.330	<0.330	160	88	-	780	-	17,000	-
Di-n-butyl phthalate	<0.330	<0.330	<0.330	2,300	7,800	2,300	200,000	2,300	200,000	2,300
Di-n-octyl phthalate	<0.330		<0.330	10,000	1,600	10,000	41,000	10,000	4,100	10,000
Dibenzo[a,h]anthracene	<0.090		<0.090	2.00	0.09		08.0		17.00	
Dibenzofuran	<0.330		<0.330	3	78		2,000		820	i
	<0.330		<0.330	17.00	2,000	260	180,000	290	18,000	310
	<0.330		<0.330	1	1		1		-	ł
1,4-Dichlorobenzene	<0.330		<0.330	2]	11,000		17,000		340
3,3-Dichlorobenzidine	<0.660		<0.660	0.007	Tm.	!	13		280	
2,4-Dichlorophenol	<0.330		<0.330	7-	230	1	6,100	i	019	
Diethyl phthalate	<0.330		<0.330	470	63,000	2,000	1,000,000	2,000	1,000,000	2,000
2,4-Dimethylphenol	<0.330	<0.330	<0.330	9	1,600	-	41,000		41,000	1
	0.00				医乳球 医三角 顧					

Sampling = 8/5/2015				*Soll Component of	Residential Properties	Properties	Industrial/Gommercial	ommercial	*Construction Worker	1,Wørker
Parameter	G-1 (4)	C-2; (5)	G-4 v	* the GW Ingestion* Exposure Route	Tier 1	Tier 4	Ter1	Tier 1 Inhalation	Tier 1	Tijer 4
Dimethyl phthalate	<0.33	<0.330	<0.330		Maria			_	20,000	-
4,6-Dinitro-2-methylphenol	<1.60	<1.60	<1.60		6.3	-	160		160	
2,4-Dinitrophenol	<0.330	<0.330	<0.330	2.0	160		4,100	*****	410	
2,4-Dinitrotoluene	<0.330	<0.330	<0.330	0.0008	0.90		8.4		180	1
2,6-Dinitrotoluene	<0.330	<0.330	<0.330	0.0007	0.90		8.4	1	180	***
Fluoranthene	0.57	0.57 < 0.330	<0.330	4,300	3,100		82,000		82,000	ļ
Fluorene	<0.330	<0.330	<0.330	260	3,100	Henry	82,000		82,000	ŀ
Hexachlorobenzene	<0.330	<0.330	<0.330	2	0.4	1	4	1.8	2/8	2.6
Hexachlorobutadiene	<0.330	<0.330	<0.330	2.2	78	-	2,000		200	1
Hexachlorocyclopentadiene	<0.330	<0.330	<0.330	400	550	10	14,000	91	14,000	1.1
Hexachloroethane	<0.330	<0.330	<0.330	0.5	78		2,000		2,000	-
Ideno[1,2,3-cd]pyrene	<0.330	<0.330	<0.330	14	0.0	-	8		170	ور باست
Isophorone	<0.330	<0.330	<0.330	8.00	15,600	4,600	410,000	4,600	410,000	4,600
2-Methylnaphthalene	3.14	3.14 < 0.330	<0.330	1.9	310	-	8,200		820	
2-Methylphenol (o-Cresol)	<0.330	<0.330	<0.330	15.00	3,900]	100,000	-	100,000	ì
3,4-Methylphenol	<0.330	<0.330	<0.330	3.9	7,800	100,000	200,000	170,000	4,100	3,300
Naphthalene	1.36	1.36 <0.330	<0.330	12	1,600	170	41,000	270	4,100	1.8
2-Nitroaniline	<1.60	<1.60	<1.60	0.7	1,200	18	31,000	28	31,000	1.5
3-Nitroaniline	<1.60	<1.60	<1.60	7			1	-	200	
4-Nitroaniline	<1.60	<1.60	<1.60	0.14	310	1,500	8,200	2,400	2,000	52
Nitrobenzene	<0.260	<0.260	<0.260	0.1	39	92	1,000	140	1,000	9,4
2-Nitrophenol	<1.60	<1.60	<1.60	-	-		-	-		
4-Nitrophenol	<1.60	<1.60	<1.60		,	1		1		
N-Nitrosodimethylamine	<0.330	<0.330	<0.330	0.000007	0.013	0.012	0.11	0.23	1.6	2
N-Nitrosodi-n-propylamine	<0.090	<0.090	<0.090	0.00005	0.00		0.8	1	18.00	1
N-Nitrosodiphenylamine	<0.330	<0.330	<0.330	1	130		1,200		25,000	-
Pentachlorophenol	<0.330	<0.330	<0.330	0.03	3		24	ì	520	1
Phenanthrene		3.04 < 0.330	<0.330	210	2,300	·	61,000	i I	61,000	i
Phenol	<0.330	<0.330	<0.330	100	23,000		610,000		61,000	
Pyrene	<0.330	<0.330	<0.330	4,200	2,300		61,000		61,000	1
Pyridine	<0.330	<0.330	<0.330	-	28		2,000		2,000	1
1,2,4-Trichlorobenzene	<0.330		<0.330	5	780	3,200	20,000	3,200	2,000	920
2,4,5-Trichlorophenol	<0.330		<0.330	270	7,800	1	200,000		200,000	1
2,4,6-Trichlorophenol	<0.330	<0.330	<0.330	0.5	28	200	520	390	11,000	540
			*			1 0				S

Sampling = $8/5/2015$		Soil Component of	Residential	Residential Properties	. Industrial/C	* Industrial/Commercial *	Constracti	Canstruction Worker
Parameter	(g. C-3 g. (5')	the GW Ingestron Exposure Route	* Tier 3	Tierra Inhalation	5 4550 / 195	* Tier 1 Inhalation	Tier 1 Ingestion	Tier 1 Inhalation
Acenaphthene	<0.330	029	4,700		120,000		120,000	
Acenaphthyfene	<0.330	85	2,300		61,000		61,000	
9	<0.330	12,000	23,000	-	610,000		810,000	H
Benzidíne	<0.330	0.000002	0.003	0.000	0.02	0.02	0.54	0.02
Benzo [a] anthracene	<0.330	2	6.0		8		170	-
	<0.090	8	60.0	1	0.8		11	
	<0.330	S	6.0	-	8	_	170	**
Benzo [k] fluoroanthene	<0.330	49	6		8.2	******	1,700	-
Benzo [g,h,i] perylene	<0.330	27,000	2,300		61,000		61,000	1
Benzoic Acid	<0.330	004	310,000		1,000,000		820,000	1
Benzył alcohoł	<0.330	3	2,800	manu .	200,000	-	61,000	
Bis(2-chloroethoxy) methane	<0.330		-			4000		
Bis(2-chloroethyl) ether	<0.330	0.0004	9.0	0.2	9	0.47	22	0.66
Bis (2-chloroisopropyl) ether	<0.330		-					1
Bis (2-ethylhexyl) phthalate	<0.330	3,600	97	31,000	410	31,000	4,100	31,000
4-Bromophenyl phenyl ether	<0.330	-	1	1	-	1		******
Butyl benzyl phthalate	<0.330	086	16,000	930	410,000	026	410,000	930
Carbazole	<0.330	09.0	32	-	290		6,200	
4-Chloroaniline	<0.330	0.7	310	-	8,200	-	820	
4-Chloro-3-methylphenol	<0.330		***************************************			A 11 72	444	}
2-Chloronaphthalene	<0.330	67	008'9	-	160,000		41,000	
2-Chlorophenol	<0.330	4	390	53,000	10,000	53,000	10,000	53,000
4-Chlorophenyl phenyl ether	<0.330		-	-				-
Chrysene	<0.330	160	88	-	780		17,000	
Di-n-butyl phthalate	<0.330	2,300	008'2	2,300	200,000	2,300	200,000	2,300
Di-n-octyl phthalate	<0.330	10,000	1,600	10,000	41,000	10,000	4,100	10,000
nthracene	<0.090	2.00	0.09		08.0	-	17.00	
	<0.330	33	78		2,000	.	820	1
ine	<0.660	0.007	1	ļ	13	1	280	1
0	<0.330	7	230	1	6,100		019	7
	<0.330	470	63,000	2,000	1,000,000	2,000	1,000,000	2,000
2,4-Dimethylphenol	<0.330	6	1,600		41,000		41,000	ļ.
				* * * * *				

115 W. Indian Trail, Aurora Table of Analysis - SOILS EPA Method 8270: SVOCs

Sampling = 8/5/2015		Soil Component of	Residential	Residential Properties		Industrial/Commercial	© Gonstruction Worker	n Worker
Parameter	. C-3 (5)	the GW Ingestion. Exposure Route	Ther 1"	Tier 1%	Tier1	Tierd Inhalation	Tier.	Tier 1 Inhalation
	<0.330	-		****			20,000	
hylphenol	<1.60	-	6.3		160		160	-
	<0.330	0.2	160		4,100		410	
	<0.330	0.0008	0.30		8.4	er ar as	180	ì
2,6-Dinitrotoluene	<0.330	0.0007	06.0		8.4	Merrin	180	
Fluoranthene	<0.330	4,300	3,100		82,000		82,000	l
	<0.330	560	3,100		82,000	****	82,000	ì
	<0.330	2	0.4	•	4	1.8	2/8	2.6
Hexachtorobutadiene	<0.330	2.2	78	-	2,000		200	1
entadiene	<0.330	400	220	10	14,000	91	14,000	1.1
Hexachloroethane	<0.330	0.5	78	-	2,000	1	2,000	****
Ideno[1,2,3-cd]pyrene	<0.330	14	6.0	1	8	1	170	ł
	<0.330	8.00	15,600	4,600	410,000	4,600	410,000	4,600
2-Methylnaphthalene	<0.330	1.9	310		8,200	-	820	ļ
o-Cresol)	<0.330	15.00	3,900		100,000		100,000	
3,4-Methylphenoi	<0.330	3.9	7,800	100,000	200,000	170,000	4,100	3,300
2-Nitroaniline	<1.60	0.7	1,200	18	31,000	28	31,000	1.5
3-Nitroaniline	<1.60	date and state					200	ļ
4-Nitroaniline	<1.60	0.14	310	1,500	8,200	2,400	2,000	52
Nitrobenzene	<0.260	0.1	39	92	1,000	140	1,000	9.4
2-Nitrophenol	<1.60							
	<1.60		1	L	1111			-
	<0.330	0.000007	0.013	0.012	0.11	0.23	1.6	2
76 1	<0.090	0.00005	0.09	1	0.8	***************************************	18.00	-
ımine	<0.330	+	130	1	1,200	-	25,000	1
enol	<0.330	0.03	3	!	24		520	m natur
Ithrene	<0.330	210	2,300	1	61,000	- manu	61,000	
	<0.330	100	23,000	1	610,000		61,000	
	<0.330	4,200	2,300	1	61,000		61,000	
	<0.330		78	1	2,000		2,000	
9	<0.330	2	780	3,200	20,000	3,200	2,000	920
	<0.330	270	7,800	****	200,000		200,000	
lol	<0.330	0.2	58	200	520	390	11,000	540
	a de	S. S						

EPA Method 8260B: VOCs 115 W. Indian Trail, Aurora Table of Analysis - Soils

Sampling = $8/5/2015$		Consense	Residential Properties	Properties	Industrial/Commercial	ommercial	Construction Worker	Worker
Parameter	(5 .)	the GW Ingestion Exposure Route	Tier 1 Ingestion	Fier 1 inhalation	Tier1	Tier † * Inhalation	Tier 1	Tier 1 Inhalation
1,3-Dichloropropane	<0.005	0.830	1,600		41,000		41,000	
2,2-Dichloropropane	<0.005		****					
1,1-Dichloropropene	<0.005							-
cis-1,3-Dichloropropene	<0.005	0.004	6,40	1.10	29	2.10	1,200	0.39
trans-1,3-Dichloropropene	<0.005	0.004	6.40	1,10	25	2.10	1,200	0.39
Ethylbenzene	<0.005	13	7,800	400	200,000	400	20,000	58
Hexachlorobutadiene	<0.005	2.20	28	-	2,000		200	
Hexachloroethane	<0.005	05.0	78		2,000	-	2,000	
2-Hexanone	<0.005	0.16	390	450	10,000	720	1,000	47
lodomethane	<0.097]			****	1
Isopropylbenzene	<0.005	16	7,800	200	200,000	800	82,000	52
4-Isopropyl toluene	<0.005			*****			;	-
Methylene chloride	<0.010	0.02	32	13	092	24	12,000	34
4-Methyl-2-pentanone	<0.010		-			3,100	-	3,100
Methyl tert-butyl ether	<0.005	0.32	780	8,800	20,000	8,800	2,000	140
Naphthalene	<0.005	12	1,600	170	41,000	270	4,100	1.80
n-Propylbenzene	<0.005	31	2,800	300	200,000	300	20,000	91
Styrene	<0.005	4	16,000	1,500	410,000	1,500	41,000	430
1,1,1,2-Tetrachloroethane	<0.005	3.4	2,300		61,000	-	18,000	-
1,1,2,2.Tetrachloroethane	0.028	0.0035	3.2	0.62	27	1.2	620	1.7
Tetrachloroethene	<0.005	90:0	12	11	110	20	2,400	28
Toluene	<0.005	12	16,000	029	410,000	929	410,000	42
1,2,3-Trichlorobenzene	<0.005	5.70	780	1	20,000	-	2,000	1
1,2,4-Trichlorobenzene	<0.005	2	780	3,200	20,000	3,200	2,000.00	920.00
1,1,1-Trichloroethane	<0.005	Ż		1,200		1,200	-	1,200
1,1,2-Trichloroethane	<0.005	0.02	310	1,800	8,200	1,800	8,200	1,800
Trichforoethene	<0.005	90.0	58	5	520	8.90	1,200	12
Trichlorofluoromethane	<0.005	34	23,000	870	610,000	1,400	140,000	13
1,2,3-Trichloropropane	<0.005	0.000017	0.021	3.2	0.19	5	4.1	0.32
1,2,4-Trimethylbenzene	<0.005	-		87		140	I	8.9
1,3,5-Trimethylbenzene	<0.005	2	780	-	20,000		20,000	0.79
Vinyl chloride	<0.010	0.01	0.46	0.28	7.90	1.10	170	1.10
Vinyl Acetate	<0.097	170	78,000	1,000	1,000,000	1,600	200,000	10
Xylene (totals)	<0.010	150	16,000	320	410,000	320	41,000	5.6
The second secon	1 T							

115 W. Indian Trail, Aurora Table of Analysis - SOILS EPA Method 8260B: VOCs

語のは、	The state of the s					A THEORY AND ADDRESS OF THE PERSON	三年 一年
} (<u>6</u>)	the GW Ingestion Exposure Route	Tier 1 Ti	Inhalation	Tier 1 Ingestion	* Tier 1 Inhalation	Fier 1 Ingestion	Tier 1 Inhalation
<0.097	25	70,000	100,000		100,000	1	100,000
<0.048	0.014	36	0.17	1,000	0.26	820	0.008
0.048	0.0006	1.2	0.29	11	0.56	230	0.17
0.005	0.03	12	0.80	100	1.60	2,300	2.2
0.005	0.86	029	630	16,000	810	4,100	22
0.005				-	-		
0.005	09.0	0+	3,000	92	3,000	2,000	3,000
0.010	08.0	81	53	720	100	16,000	140
0.005	0.20	110	10	2,900	15	1,000	3.9
0.005	52	3,900	*****	100,000	1	20,000	
0.019	17	47,000	25,000	1,000,000	25,000	120,000	730
0.005	****					-	111
0.005		****		-			1
0.097	32	008'2	720	200,000	720	20,000	6
0.005	0.07	9	0.30	44	0.64	410	0.90
0.005	1	1,600	130	41,000	210	4,100	1.30
0.010			1,500		1,500	20,000	36
0.005	0.60	100	0:30	940	0.54	2,000	0.76
0.010			110		180		3
0.005	4	1,600		41,000	1	4,100	150
0.005				_		-	
0.005	0.40	1,600	130	41,000	1,300	41,000	1,300
0.005	0.002	0.46	11	4	17	86	0.11
0.005	0.0004	0.35	0.06	2.90	0.12	62	0.16
0.005		†		***	-		
0.005	17	2,000	560	180,000	560	18,000	310
0.005					1	_	
0.005	2		11,000		17,000		340
0.005	43	16,000	500	410,000	310	180,000	20
0.005	23	008'2	1,300	200,000	1,700	200,000	130
0.005	0.02	2	07-0	63	0.70	1,400	0.99
0.005	0.06	3,900	290	100,000	470	10,000.0	က
0.005	0.40	780	1,200	20,000	1,200	20,000	1,200
0.005	0.70	1,600	3,100	41,000	3,100	41,000	3,100
0.005	0.03	6	15		23	1,800	0.50
				200			
	\$\\\ \frac{0.048}{0.005} \\ \frac{0.048}{0.005} \\ \frac{0.048}{0.005} \\ \frac{0.048}{0.005} \\ \frac{0.005}{0.005} \\ \frac{0.005}{0.00		0.006 0.006 0.006 0.20 0.20 0.20 0.20 0.	0.0006 7.2 0 0.03 7.2 0 0.06 10 3,0 0.80 81 3,0 0.80 81 3,0 0.80 81 3,0 0.20 110 3,0 0.20 170 25,0 17 47,000 25,0 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 1 1 1,600 3 1 1,600 3 1 1,600 3 1 1,600 3 1 1,600 3 1 1,600 3 1 1,600<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Sampling = 07/02/2015						Soil Component of		Residential Properties	Industrial/	Industrial/Conimercial	Construction Worker	n Worker
	B-2 = (3')	B-3 (a')	B-4 (4)	. B-6 (1)	* B - 8 * * * * * * * * * * * * * * * * * * *	the GW Ingestion Exposure Route	Tier 1	Tier f Inhalation	Tier1	Tier 1 Inhalation	Filer 1 Ingestion	Tier.1
Acetone	<0.106	<0.121	<0.105	<0.117	<0.136	25	20,000	100,000	i	100,000		100,000
Acrolein	<0.053	<0.060	<0.053	<0.058	<0.068	0.014	39	0.17	1,000	0.26	820	0.008
Acrylonitrile	<0.053	<0.060	<0.053	<0.058	<0.068	0.0006	1.2	0.29	11	0.56	230	0.17
Benzene	<0.005	<0.006	<0.005	<0.006	<0.00>	0.03	12	0.80	100	1.60	2,300	2.2
Bromobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	0.86	089	089	16,000	810	4,100	22
Bromochloromethane	<0.005	<0.006	<0.005	<0.006	<0.00>			ļ	-			ŀ
Bromodichloromethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.60	10	3,000	92	3,000	2,000	3,000
Bromoform	<0.011	<0.012	<0.011	<0.012	<0.014	0.80	18	53	720	100	16,000	140
Bromomethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.20	011	10	2,900	15	1,000	3.9
n-Butylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007	52	3,900	****	100,000		20,000	
2-Butanone	<0.021	<0.024	<0.021	<0.023	<0.027	17	47,000	25,000	1,000,000	25,000	120,000	730
sec-Butylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007			.		****		i
tert-Butylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007						1	•
Carbon disulfide	<0.106	<0.121	<0.105	<0.117	<0.136	32	2,800	720	200,000	720	20,000	6
Carbon tetrachloride	<0.005	<0.006	<0.005	<0.006	<0.007	0.07	5	0.30	44	0.64	410	06.0
Chlorobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	1	1,600	130	41,000	210	4,100	1.30
Chloroethane	<0.011	<0.012	<0.011	<0.012	<0.014		-	1,500		1,500	20,000	39
Chloroform	<0.005	>0.006	<0.005	<0.006	<0.007	0.60	001	0:30	940	0.54	2,000	0.76
Chloromethane	<0.011	<0.012	<0.011	<0.012	<0.014			110		180	J	3.
2-Chlorotoluene	<0.005	<0.006	<0.005	<0.006	<0.007	4	1,600		41,000		4,100	150
4-Chlorotoluene	<0.005	<0.006	<0.005	>0.006	<0.007	_	-				1	
Dibromochloromethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.40	1,600	130	41,000	1,300	41,000	1,300
1,2-Dibromo-3-chloropropane	<0.005	<0.006	<0.005	<0.006	<0.007	0.002	0.46	11	4	17	89	0.11
1,2-Dibromoethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.0004	0.32	0.06	2.90	0.12	62	0.16
Dibromomethane	<0.005	<0.006	<0.005	<0.006	<0.007	1	1	-	1	1	1	
1,2-Dichlorobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	17	7,000	560	180,000	560	18,000	310
	<0.005	<0.006	<0.005	<0.006	<0.007	,	1	1			ŧ	
1,4-Dichlorobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	2	1	11,000		17,000	1	340
Dichlorodifluoromethane	<0.005	<0.006	<0.005	<0.006	<0.007	43	16,000	200	410,000	310	180,000	20
1,1-Dichloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	23	7,800	1,300	200,000	1,700	200,000	130
1,2-Dichloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.02	4	0.40	. 63	0.70	1,400	0.99
1,1-Dichloroethene	<0.005	<0.006	<0.005	<0.006	<0.007	0.06	3,900	290	100,000	470	10,000.0	60
cis-1,2-Dichloroethene	<0.005	<0.006	<0.005	<0.006	<0.007	0.40	780	1,200	20,000	1,200	20,000	1,200
ene	<0.005	<0.006	<0.005	<0.006	<0.007	0.70	1,600	3,100	41,000	3,100	41,000	3,100
1,2-Dichloropropane	<0.005	<0.006	겍			0,03	6	15	84	23	1,800	0.50
					(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			3	6 a			10 May 10 Ma

Parameter	B-2** (31)	B-3 (3)	(4)	(1)	6-8 (4)	me SW Ingestion Exposure Route	Ingestion	fier 1 Inhalation	Tier 1 Ingestion	Tier 1 Trihalatron	Tier 18	Tier 1 Inhalation
1,3-Dichloropropane	<0.005	<0.006	<0.005	≥0.006		0.830			41,000		41,000	
2,2-Dichforopropane	<0.005	<0.006	<0.005	<0.006	<0.007	-		!	Record	ŀ		1
1,1-Dichloropropene	<0.005	<0.006	<0.005	<0.006	<0.007	-	-		i	1	ı	i
cis-1,3-Dichloropropene	<0.005	<0.006	<0.005	<0.006	<0.00>	0.004	6.40	1.10	22	2.10	1,200	0.39
trans-1,3-Dichloropropene	<0.005	<0.006	<0.005	<0.006	<0.007	0.004	6.40	1.10	25	2.10	1,200	0.39
Ethylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007	13	7,800	400	200,000	400	20,000	58
Hexachlorobutadiene	<0.005	<0.006	<0.005	<0.006	<0.007	2.20	82	-	2,000	1	200	
Hexachloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.50	82	1	2,000	1	2,000	1
2-Hexanone	<0.005	<0.006	<0.005	<0.006	<0.007	0.16	390	450	10,000	720	1,000	47
odomethane	<0.106	<0.121	<0.105	<0.117	<0.136			1		1	1	1
sopropylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007	91	008'2	200	200,000	800	82,000	52
4-Isopropyl toluene	<0.005	<0.006	<0.005	<0.006	<0.007	PPER AN	-	1	1			!
Methylene chloride	<0.011	<0.012	<0.011	<0.012	<0.014	0.02	98	13	092	24	12,000	34
4-Methyl-2-pentanone	<0.011	<0.012	<0.011	<0.012	<0.014		1		1	3,100	-	3,100
Methyl tert-butyl ether	<0.005	<0.006	<0.005	<0.006	<0.007	0.32	082	008'8	20,000	8,800	2,000	140
Naphthalene	<0.005	<0.006	<0.005	<0.006	<0.007	12	1,600	0.11	41,000	270	4,100	1.80
n-Propylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007	31	2,800	00E	200,000	300	20,000	91
Styrene	<0.005	<0.006	<0.005	<0.006	<0.007	4	16,000	1,500	410,000	1,500	41,000	430
1,1,1,2-Tetrachloroethane	<0.005	>0.006	<0.005	<0.006	<0.007	3,4	2,300		61,000		18,000	1
1,1,2,2-Tetrachloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.0035	3.2	0.62	27	1.2	029	1.7
Tetrachloroethene	<0.005	<0.006	<0.005	<0.006	<0.007	0.06	12	11	110	20	2,400	28
Toluene	<0.005	<0.006	<0.005	<0.006	<0.007	12	16,000	650	410,000	650	410,000	42
1,2,3-Trichlorobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	5.70	780		20,000	and parties.	2,000	
1,2,4-Trichlorobenzene	<0.005	<0.006	<0.005	<0.006	<0.007	5	780	3,200	20,000	3,200	2,000.00	920.00
1,1,1-Trichloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	2	1	1,200	1	1,200	-	1,200
1,1,2-Trichloroethane	<0.005	<0.006	<0.005	<0.006	<0.007	0.02	310	1,800	8,200	1,800	8,200	1,800
Trichloroethene	<0.005	<0.006	<0.005	<0.006	<0.007	90.0	58	5	520	8.90	1,200	12
Trichlorofluoromethane	<0.005	<0.006	<0.005	<0.006	<0.007	34	23,000	870	610,000	1,400	140,000	13
1,2,3-Trichloropropane	<0.005	40.00€	<0.005	<0.006	<0.007	0.000017	0.021	3.2	0.19	5	4.1	0.32
1,2,4-Trimethylbenzene	<0.005	<0.006	<0.005	<0.006	<0.007	444		87		140		8.9
1,3,5-Trimethylbenzene	<0.005	< 0.006	<0.005	<0.006	<0.007	2	780	-	20,000	i	20,000	0.79
Vinyt chloride	<0.011	<0.012	<0.011	<0.012	<0.014	0.01	0.46	0.28	7.90	1.10	170	1.10
Vinyl Acetate	<0.106	<0.121	<0.105	<0.117	<0.136	170	78,000	1,000	1,000,000	1,600	200,000	10
Xylene (totals)	<0.011	<0.012	<0.011	<0.012	<0.014	150	16,000	320	410,000	320	41,000	5.6
	100											

115 W. Indian Trail, Aurora Table of Analysis - SOILS EPA Method 8270: SVOCs

Sampling = 07/02/2015

Sampling = 07/02/2015						Soil Component of	Residential Properties	Properties	Industrial/Commercial	ommercial	Construction Worker	n Wörker
Parameter	B-2 (3)	B-3 (3)	4	B-6 *	B-8 (4)	the GW Ingestion Exposure Rotte	Tier 1 Ingestion:	Tier f	- Tier 1 - Ingestion	Tier 1*	Tier 1 Ingestion	* Tier 1 Inhalation
Acenaphthene	<0.330		iΙ		<0.330	570	4,700		120,000		120,000	
Acenaphthylene	<0.330	<0.330		<0.330	<0.330	85	2,300	-	61,000		61,000	1
Anthracene	<0.330	<0.330		3.63	3.63 < 0.330	12,000	23,000		610,000	1	610,000	1
Benzidine		<0.330	<0.330	<0.330	<0.330	0.000002	0.003	0.000	0.02	0.02	0.54	0.02
Benzo [a] anthracene	ı	<0.330	<0.330	6.26	<0.330	2	0.0		8		170	j
Benzo [a] pyrene	<0.090	<0.090	060.0⊳	6.19	<0.090	8	0.09		0.8		17	1
Benzo [b] fluoroanthene		<0.330	<0.330	4.95	<0.330	. 5	6.0		8	1.	170	;
Benzo [k] fluoroanthene	<0.330	<0.330	<0.330	7.98	<0.330	49	6		82		1,700	-
Benzo [g,h,i] perylene	<0.330	<0.330	<0.330	2.3	<0.330	27,000	2,300	1	61,000	1	61,000	-
Benzoic Acid	<0.330	<0.330	<0.330	<0.330	<0.330	400	310,000		1,000,000	tat	820,000	-
Benzyl alcohol	<0.330	<0.330	<0.330	<0.330	<0.330	3	7,800		200,000	77.6	61,000	
Bis(2-chloroethoxy) methane	<0.330	<0.330	<0.330		<0.330			1			;	-
Bis(Ź-chloroethyl) ether	<0.330	<0.330	<0.330	<0.330	<0.330	0.0004	9.0	0.2	5	0.47	75	99.0
Bis (2-chloroisopropyl) ether	<0.330	<0.330	<0.330		<0.330		, , , , , , , , , , , , , , , , , , ,	-		1	1	ŀ
Bis (2-ethylhexyl) phthalate	<0.330	<0.330	<0.330		<0.330	3,600	9‡	31,000	410	31,000	4,100	31,000
4-Bromophenyl phenyl ether		<0.330	<0.330		<0.330	-		1	1	-		
Butyl benzyl phthalate	<0.330	<0.330	<0.330		<0.330	930	16,000	026	410,000	930	410,000	930
Carbazole		<0.330		00	<0.330	09.0	35	\$1. Urta	290	1	6,200	
4-Chloroaniline		<0.330			<0.330	0.7	016		8,200		820	111
4-Chloro-3-methylphenol	<0.330	<0.330	<0.330	<0.330	<0.330			*****		ŀ	1	1
2-Chloronaphthalene	<0.330	<0.330	<0.330	<0.330	<0.330	49	006'9	-	160,000		41,000	71-1-1
2-Chlorophenol	<0.330	<0.330	<0.330		<0.330	4	06E	53,000	10,000	53,000	10,000	53,000
4-Chlorophenyl phenyl ether	<0.330	<0.330	<0.330	<0.330	<0.330					1	-	7.00
Chrysene	<0.330	<0.330	<0.330	6.45	6.45 < 0.330	160	88	-	780	1,1	17,000	
Di-n-butyl phthalate		<0.330	<0.330		<0.330	2,300	7,800	2,300	200,000	2,300	200,000	2,300
Di-n-octyl phthalate	<0.330	<0.330		<0.330	<0.330	10,000	1,600	10,000	41,000	10,000	4,100	10,000
Dibenzo[a,h]anthracene		<0.090	<0.090	0.472	060.0>	2.00	0.09	-	0.80		17.00	!
Dibenzofuran		<0.330			<0.330	3	78	1 1	2,000		820	!
1,2-Dichlorobenzene		<0.330			<0.330	17.00	2,000	260	180,000	290	18,000	310
1,3-Dichlorobenzene	- 1	<0.330	- 1		<0.330	1	1	1	1	-	-	1
1,4-Dichlorobenzene		<0.330			<0.330	2		11,000	*******	17,000	;	340
3,3-Dichlorobenzidine		<0.660		<0.660	<0.660	0.007	1		13		280	}
2,4-Dichlorophenal		<0.330		Ī	<0.330	1	230	-	6,100	-	610	1
Diethyl phthalate		<0.330	- [<0.330	<0.330	470	63,000	2,000	1,000,000	2,000	1,000,000	2,000
2,4-Dimethylphenol	<0.330	<0.330	<0.330		<0.330	6	1,600	- A	41,000	1	41,000	-
(miles and opense) miles and miles											2 2 6 2 2	

(4.)	
r	1
) <0.330 <0.330
60 <1.60	<1.60
330	♥
330	₽
330	ଚ
330	<0.330 <0.330
330	8
စ္က	위 위
စ္က	
ଚ୍ଚ	8
330	Ŷ
330	Ŷ
330	⊽
စ္က	
ဗ္ဗ	♡
330	<0.330 <0.330
330	\$
8	<1.60 <1.60
8	<1.60
8	₹
잃	
8	√ 7.60
8	V
띯	₹
960	\$
စ္တ	₹
띯	₹
윉	<0.330 <0.330
စ္တ	₽
စ္တ	₽
330	\$
330	8
8	δ.
န္တု	<0.330 <0.330

Table of Analysis - SOIL USEPA Method 6010, 7471, 9014: Inorganics (Metals) 115 W. Indian Trail, Aurora

						PH Specific for Soil	Residential		Industrial/Commercial	ommercial	Construction Worker	n Worker	
Sampling = 07/02/2015 Parameter	B-1.(3')	B-5 (3')	B-7(3)	B-9 (4:)	Outside Pile Grab	Component of the GW ing Rte (873'9'0)	Tier1	Tier 1 Inhalation	Tier 1 Ingestion	Tier 1 e inhalation	Tier f Ingestion		Background Levels
Arsenic, total	<1.00	<1.00	<1.00	<1.00	1.00	33	***	750		1200	61	25000	13
Barium, total	7.55	101	81	83.1	24.7	2,100	5500	690000	140000	910000	14000	870000	110
Cadmium, total	0.0	0.727	2.24	1.91	6.63	430	78	1800	2000	2800	200	59000	0.6
Chromium, total	2.16	9.9	7.96	5.74	133	21	230	270	6100	420	4100	690	16.2
Lead, total	2.21	54.9	312	14.9	427	282	400	1	800	-	700	-	36
Mercury, total	<0.050	<0.050	0.178	0.378	0.055	æ	23	10	610	16	61	0.1	0.06
Selenium, total	<2.00	<2.00	3.12	2.95	8.54	1.3	390	1	10000	;	1000	,	0.48
Silver, total	<0.500	<0.500	<0.500	<0.500	1.64	110	390	ı	10000	a paragraphic de la constantina della constantin	1000	i	0.55
Phenols	<3.00	<3.00	<3.00	<3.00	<3.00	-	23000		610,000		61,000	-	-
Hd	11.1	10.6	10.4	6	8.1								8 9
			100		The second second	Secretary of the second			Take the late of				

Units = mg/Kg (parts per million) for total; mg/L (parts per million) for TCLP

* = pH of sample exceeds pH range

-- = Not Available

BOLD = Result Exceeds IEPA TACO Tier 1/Class I SROs

GABRIEL.

Environmental Services

Client: Gabriel Environmental Services Project: 115 W. Indian Trail, Aurora

Client Sample ID:

C-I (4') Grab

Sample Date: Date Analyzed: 8/5/2015 8/15/2015

Collected By: Method:

Gabriel

SW846-8270C

Sample ID:

Date Received:

1508025-001A

8/5/2015

Matrix:

Solid and Chemical Materials SUB

Analyst: Units:

mg/Kg-dry

DE: 1 DT.

				DF:	1		PF:	1	
PARAMETER	RESULT	RL	QUAL	PARAMETE	R		RESULT	RL	QUAL
1,2,4-Trichlorobenzene	ND	0.330		1,2-Dichloroben	геле		ND	0.330	
1,3-Dichlorobenzene	ND	0.330		1,4-Dichlorobena	zene		ND	0.330	
2,4,5-Trichlomphenol	ND	0.330		2,4,6-Trichloropt	enol		ND	0.330	
2,4-Dichlorophenal	ND	0.330		2,4-Dimethylphe	nol		ND	0.330	
2,4-Dinitrophenol	ND	0.330		2,4-Dinitrotoluen	е		ND	0.330	
2,6-Dinitrotoluene	ND	0.330		2-Chloronaphtha	lene		ND	0.330	
2-Chlorophenol	ND	0.330		2-Methylnaphtha	lene		3.14	0.330	
2-Methylphenol	ND	0.330		2-Nitroaniline			ND	1.60	
2-Nitrophenol	ND	1.60		3,3 -Dichloroben	zidine		ND	0.660	
3,4-Methylphenof	ND	0.330		3-Nitroaniline			ND	1.60	
4,6-Dinitro-2-methylphenol	ND	1.60		4-Bromophenyl p	henvi ether		ND	0.330	
4-Chloro-3-methylphenol	ND	0.330		4-Chloroaniline			ND	0.330	
4-Chlorophenyl phenyl ether	ND	0.330		4-Nitroaniline			ND	1,60	
4-Nitrophenol	ND	1.60		Acenaphthene			ND	0.330	
Acenaphthylene	ND	0.330		Anthracene			ND	0.330	
Benzidine	ND	0.330		Benziy alcohol			ND	0.330	
Benzo(a)anthracene	0.347	0.330		Benzo(a)pyrene			0.225	0.090	
Benzo(b)fluoranthene	ND	0.330		Benzo(g,h,i)peryle	ne		ND	0.330	
Benzo(k)fluoranthene	ND	0.330		Benzoic acid			ND	0.330	
Bis(2-chloroethoxy)methane	ND	0.330		Bis(2-chloroethyl)	ether		ND	0.330	
Bis(2-chloroisopropyl) ether	ND	0.330		Bis(2-ethoxyethyl)			ND	0.330	
Bis(2-ethylhexyl) phthalate	ND	0.330		Butyl benzyl phtha			ND	0.330	
Carbazole	ND	0.330		Chrysene			0.610	0.330	
Dibenz(a,h)anthracene	ND	0.090		Dibenzofuran			ND	0.330	
Diethyl phthalate	ND	0.330		Dimethyl phthalate			ND	0.330	
Di-n-butyl phthalate	ND	0.330		Di-n-octyl phthalat			ND	0.330	
Fluoranthene	0.570	0.330		Fluorene	•		ND	0.330	
Hexachlorobenzene	ND	0.330		Hexachiorobutadia	ene.		ND	0.330	
Hexachlorocyclopentadiene		0.330		Hexachloroethane			ND	0.330	
Indeno(1,2,3-cd)pyrene		0.330		Isophorone			ND		
m.p-Cresol (3.4-Methylphenol)		0.330		Naphthalene			1.36	0.330	
Nitrobenzene		0.260		N-nitrosodimethyla	mine		ND	0.330	
N-Nitrosodi-n-propylamine		0.090		N-Nitrosodiphenyla				0.330	
o-Cresol (2-Methylphenol)		0.330		Pentachiorophenol				0.330	
Phenanthrene		0.330		Phenol				0.330	
Pyrene		0.330		Pyridine				0.330	
	SURROGATE Surr: 2-Fluorophe Surr: Nitrobenzen Surr: Phenol-d5 Surr: 2-Fluorobiph Surr: 2,4,6-Tribron Surr: Terphenyl-d	no! e-d5 enyl nophenol		%RECOVERY 68.2 91.4 80.8 64.9 88.4 83.9	LIMITS 21 - 96 44 - 100 45 - 98 53 - 104 55 - 136 62 - 116	QUAL	ND	0.330	

GABRIEL

Environmental Services

Client: Gabriel Environmental Services Project: 115 W. Indian Trail, Aurora

Gabriel

Client Sample ID:

C-2 (5') Grab

Sample Date: Date Analyzed: 8/5/2015 8/15/2015

Collected By: Method:

SW846-8270C

Sample 1D:

....

1508025-002A

Date Received: Matrix: 8/5/2015
Solid and Chemical Materials

Analyst:

SUB

Units:

mg/Kg-dry

DF:

PR.

				DF:	1		PF:	1	
PARAMETER	RESULT	RL	QUAL	PARAMETE	R		RESULT	RL	QUAL
1,2,4-Trichlorobenzene	ND	0.330	22.17//22	1,2-Dichloroben	zene		ND	0.330	
1,3-Dichlorobenzeле	ND	0.330		1,4-Dichlereben	zene		ND	0.330	
2,4,5-Trichlorophenol	ND	0.330		2,4,6-Trichloropi	henol		ND	0.330	
2,4-Dichlorophenol	ND	0.330		2,4-Dimethylphe	nol		ND	0.330	
2,4-Dinitrophenal	ND	0.330		2,4-Dinitrotoluen	ie		ND	0.330	
2,6-Dinitrotoluene	ND	0.330		2-Chloronaphthe	alene		ND	0.330	
2-Chlorophenot	ND	0.330		2-Methylnaphtha	ilene		ND	0.330	
2-Methylphenol	ND	0.330		2-Nitroaniline			ND	1,60	
2-Nitrophenol	ND	1.60		3,3 -Dichloroben	zidine		ND	0.660	
3,4-Methylphenol	ND	0.330		3-Nitroaniline			ND	1.60	
4,6-Dinitro-2-methylphenol	ND	1.60		4-Bromophenyl g	henvl ether		ND	0.330	
4-Chloro-3-methylphenol	ND	0.330		4-Chloroaniline	,		ND	0.330	
4-Chlorophenyl phenyl ether	ND	0.330		4-Nitroanitine			ND	1.60	
4-Nitrophenol	ND	1.60		Acenaphthene			ND	0.330	
Acenaphthylene	NĐ	0.330		Anthracene			ND	0.330	
Benzidine	ND	0.330		Benzly alcohol			ND	0.330	
Benzo(a)anthracene	ND	0.330		Benzo(a)pyrene			ND	0.090	
Benzo(b)fluoranthene	ND	0.330		Benzo(g,h,i)peryl	ene		ND	0.330	
3enzo(k)fiuoranthene	ND	0.330		Benzoic acid			ND	0.330	
3is(2-chloroethoxy)methane	ND	0.330		Bis(2-chloroethyl)	\ ether		ND	0.330	
3ls(2-chloroisopropyl) ether	ND	0.330		Bis(2-ethoxyethyl			ND	0,330	
31s(2-ethylhexyl) phthalate	ND	0.330		Butyl benzyl phth			ND	0.330	
Carbazole	ND	0.330		Chrysene	a.a.o		ND	0.330	
Dibenz(a,h)anthracene	ND	0.090		Dibenzofuran			ND	0.330	
Diethyl phthalate	ND	0.330		Dimethyl phthalat	e		ND	0.330	
Di-n-butyl phthalate	ND	0.330		Di-n-octyl phthala			ND	0.330	
fuoranthene	ND	0.330		Fluorene			ND	0.330	
fexachtorobenzene	ND	0.330		Hexachlorobutadi	one		ND	0.330	
lexachlorocyclopentadiene	ND	0.330		Hexachloroethane			ND		
nderio(1,2,3-cd)pyrene	ND	0.330		Isophorone	•		ND	0.330 0.330	
r.p-Cresol (3.4-Methylphenol)	ND	0.330		Naphthalene			ND		
litrobenzene	ND	0.260		N-nitrosodimethyl	omine			0.330	
f-Nitrosedi-n-propylamine		0.090		N-Nitrosodiphenyl				0.330	
-Cresol (2-Methylphenol)		0.330						0.330	
henanthrene		0.330		Pentachloropheno	Я			0.330	
угеле		0.330		Phenol Pyridine				0.330	
-	SURROGATE Surr: 2-Fluarophe Surr: Nitrobenzen Surr: Phenol-d5	nol e-d5		%RECOVERY 66.0 73.8 76.5	LIMITS 21 - 96 44 - 100 45 - 98	QUAL	ND	0.330	
	Surr: 2-Fluorobipt Surr: 2,4,6-Tribros Surr: Terphenyl-d	nophenol		66.4 106 106	53 - 104 55 - 136 62 - 116				

GABRIEL

Environmental Services

Client: Gabriel Environmental Services Project: 115 W. Indian Trail, Aurora

Client Sample ID: Sample Date:

C-3 (5') Grab

Date Analyzed:

8/5/2015 8/13/2015 Gabriel

Collected By: Method:

SW846-5035/8260B

Sample ID:

1508025-005A

Date Received: Matrix:

8/5/2015

Analyst:

Solid and Chemical Materials AD

Units:

mg/Kg-dry

	711010-2003310200	J.D.					···· Direction		
	·			DF:	1		PF:	0.9	
PARAMETER	RESULT	RL	QUAL	PARAMETER	~~~		RESULT	RL	QUAL
1,1,1,2-Tetrachforoethane	ND	0.005		1,1,1-Trichloroetha	ane		NĐ	0.005	
1,1,2,2-Tetrachloroethane	0.028	0.005		1,1,2-Trichloroetha	ane		ND	0.005	
1,1-Dichtoroethane	ND	0.005		1,1-Dichlomethene	9		ND	0.005	
1,1-Dichloropropene	ND	0.005		1,2,3-Trichloroben	zene		ND	0.005	
1,2,3-Trichloropropane	ND	0.005		1,2,4-Trichloroben	zene		ND	0.005	
1,2,4-Trimethylbenzene	· ND	0.005		1,2-Dibromo-3-chlo	propropane		ND	0.005	
1,2-Dibromoethane	ND	0.005		1,2-Dichlorobenze	ne		ND	0.005	
1,2-Dichloroethane	ND	0.005		1,2-Dichloropropar	ne		ND	0.005	
1,3,5-Trimethylbenzene	ND	0.005		1,3-Dichlorobenzer			ND	0.005	
1,3-Dichloropropane	NĐ	0.005		1,4-Dichlorobenzer			ND	0.005	
2,2-Dichloropropane	ND	0.005		2-Butanone (MEK)			ND	0.019	
2-Chlorotoluene	NĐ	0.005		2-Hexanone			ND	0.005	
4-Chlorotaluene	ND	0.005		4-Isopropyltoluene			ND	0.005	
4-Methyl-2-pentanone	ND	0.010		Acetone			BRL	0.097	
Acrolein	ND	0.048		Acrylonitrile			ND	0.048	
Benzene	ND	0.005		Bromobenzene			ND	0.005	
Bromochtoromethane	ND	0.005		Bromodichlorometh	nane		ND	0.005	
Bromoform	ND	0.010		Bromomethane			ND	0.005	
Carbon disulfide	BRL	0.097		Carbon tetrachlorid	e		ND	0.005	
Chlorobenzene	ND	0.005		Chloroethane	-		ND	0.010	
Chloroform	ND	0.005		Chloromethane			ND	0.010	
cis-1,2-Dichloroethene	ND	0.005		cis-1,3-dichloroprop	ene		ND	0.005	
Dibromochloromethane	ND	0.005		Dibromomethane				0.005	
Dichlorodiffuoromethane	, ND	0.005		Ethylbenzene				0.005	
lexachlorobutadiene	ND	0.005		Hexachloroethane				0.005	
odomethane	BRL	0.097		Isopropylbenzene				0.005	
Nethyl tert-Butyl Ether (MTBE)	ND	0.005		Methylene chloride				0.010	
laphthalene	ND	0.005		n-Butylbenzene				0.005	
-Propylbenzene	NĐ	0.005		sec-Butylbenzene				0.005 0.005	
lyrene	ND	0.005		tert-Butylbenzene				0.0 0 5 0.005	
etrachloroethene	ND	0.005		Toluene				0.005	
ans-1,2-Dichloroethene	ND	0.005		trans-1,3-dichloropro	nene).005).005	
richlomethene		0.005		Trichiorofluorometha	•).005).005	
inyl acstate		0.097		Vinyl chloride).010).010	
ylenes, Total		0.010				*	,,,,,	7.010	
	SURROGATE Surr: 4-Bromofluo				LIMITS	QUAL			

Surr: 4-Bromofluorobenzene

Surr: Toluene-d8

Surr: Dibromofluoromethane

96.2 98.9

85 - 111 86 - 110

87 - 114

Client: Gabriel Environmental Services Project: 115 W. Indian Trail, Aurora

Client Sample ID: Sample Date: Date Analyzed:

C-3 (5') Grab 8/5/2015 8/15/2015

Collected By: Method:

Gabriel SW846-8270C Sample ID:

Date Received:

1508025-005C 8/5/2015

Matrix: Analyst: Units:

Solid and Chemical Materials

mg/Kg-dry

DF: 1 PF:

				DF:	1		PF:	1	
PARAMETER	RESULT	RL	QUAL	PARAMETE	R		RESULT	RI.	QUAL
1,2,4-Trichlombenzene	ND	0.330	•	2,4,5-Trichlorop	henol		ND	0.330	<u> </u>
2,4,6-Trichlorophenol	ND	0.330		2,4-Dichforophe	nel		ND	0.330	
2,4-Dimethylphenol	ND	0.330		2,4-Dinitropheno	at		ND	0.330	
2,4-Dinitrotoluene	ИD	0.330		2,6-Dinitrotofuer	e		ND	0.330	
2-Chloronaphthalene	ND	0.330		2-Chlorophenot			ND	0.330	
2-Methylnaphthalene	ND	0.330		2-Methylphenol			ND	0.330	
2-Nitroaniline	ND	1.60		2-Nitrophenol			ND	1.60	
3,3'-Dichlorobenzidine	ND	0.660		3,4-Methylpheno	ıl		ND	0.330	
3-Nitroaniline	ND	1.60		4,6-Dinitro-2-me	thylphenol		ND	1.60	
4-Bromophenyt phenyt ether	ND	0.330		4-Chlaro-3-meth	ylphenol		ND	0.330	
4-Chloroaniline	ND	0.330		4-Chlorophenyl p	henyl ether		ND	0.330	
4-Nitroaniline	ND	1.60		4-Nitrophenol			ND	1.60	
Acenaphthene	ND	0.330		Acenaphthylene			ND	0.330	
Anthracene	ND	0.330		Benzidine			ND	0.330	
Benzly afcohol	ND	0.330		Benzo(a)anthrac	ene		NĐ	0.330	
Benzo(a)pyrene	ND	0.090		Benzo(b)fluorant	hene		ND	0.330	
Benzo(g,h,i)perytene	ND	0.330		Benzo(k)fluoranti	nene		ND	0.330	
Benzoic acid	ND	0.330		Bis(2-chloroethox	y)methane		ND	0.330	
lis(2-chloroethyl) ether	ND	0.330		Bis(2-chloroisopr	opyl) ether		ND	0.330	
lis(2-ethoxyethyl) phthalate	ND	0.330		Bis(2-ethylhexyl)	phihalale		ND	0.330	
lutyl benzyl phthalate	ND	0.330		Carbazole			ND	0.330	
Chrysene	ND	0.330		Dibenz(a,h)anthra	acene		ND	0.090	
)ibenzofuran	ND	0.330		Diethyl phthalate			ND	0.330	
imethyl phthalate	ND	0.330		Di-n-butyl phthala	te		ND	0.330	
i-n-octyt phihalate	ND	0.330		Fluoranthene			ND	0.330	
luorene	ND	0.330		Hexachlorobenze	ne		ND	0.330	
exachiorocyclopentadiene	ND	0.330		Indeno(1,2,3-cd)p	yrene		ND	0.330	
ophorone	ND	0.330		m.p-Cresol (3.4-N	lethylphenal)		ND	0.330	
itrobenzene	ND	0.260		N-nitrosodimethyl	,			0.330	
-Nitrosodi-n-propylamine	NĐ	0.090		N-Nitrosodipheny				0.330	
Cresol (2-Methylphenol)	ND	0.330		Pentachloropheno				0.330	
henanthrene	ND	0.330		Phenol				0.330	
yrens	ND	0.330		Pyridine				D.330	
	SURROGATE			%RECOVERY	LIMITS	QUAL	=		
	Surr. 2-Fluorophe Surr. Nilrobenzen Surr. Phenot-d5	e-d5		76.4 73.3 88.9	21 - 96 44 - 100 45 - 98				
	Surr: 2-Fluoroblph	•		89.5	53 - 104				
	Surr: 2,4,6-Tribron Surr: Terphenyl-d:			94.6 91.7	55 - 136				

Client: Gabriel Environmental Services Project: 115 W. Indian Trail, Aurora

Client Sample ID:

C-4 (5') Grab

Sample Date: Date Analyzed:

8/5/2015 8/15/2015 Gabriel

Collected By: Method:

SW846-8270C

Sample ID:

1508025-008A

Date Received:

8/5/2015

Matrix:

Solid and Chemical Materials

Analyst:

SUB

Units:

mg/Kg-dry

DE.

PF.

				DF:	İ		PF:	1	
PARAMETER	RESULT	RL	QUAL	PARAMETE:	R		RESULT	RI.	QUAL
1,2,4-Trichlorobenzene	ND	0.330		1,2-Dichloroben:	zene	*****	ND	0.330	
1,3-Dichlorobertzene	ND	0.330		1,4-Dichloroben:	zene		ND	0.330	
2,4,5-Trichiorophenol	ND	0.330		2,4,6-Trichloropt	nenol		ND	0.330	
2,4-Dichlorophenol	ND	0.330		2,4-Dimethylphe	nol		ND	0.330	
2,4-Dinitrophenol	ND	0.330		2,4-Dinitrotoluen	e		ND	0.330	
2,6-Dinitrotoluene	ND	0.330		2-Chioronaphtha	lene		ND	0.330	
2-Chlorophenoi	ND	0.330		2-Methylnaphtha	lene		ND	0.330	
2-Methylphenol	ND	0.330		2-Nitroaniline			ND	1.60	
2-Nitrophenol	ND	1.60		3,3'-Dichloroben	zidine		ND	0.660	
3,4-Methylphenol	ND	0.330		3-Nitroaniline			ND	1,60	
4,6-Dinitro-2-methylphenol	ND	1.60		4-Bromophenyl p	henvi ether		ND	0.330	
4-Chloro-3-methylphenol	ND	0.330		4-Chloroaniline			ND	0.330	
4-Chlorophenyl phenyl ether	ND	0.330		4-Nitroaniline			ND	1.60	
4-Nitrophenol	ND	1.60		Acenaphthene			ND	0.330	
Acenaphthylene	ND	0.330		Anthracene			ND	0.330	
Benzidine	ND	0.330		Benzly alcohol			ND	0.330	
Benzo(a)anthracene	ND	0.330		Benzo(a)pyrene			ND	0.090	
Benzo(b)fluoranthene	ND	0.330		Benzo(g,h,i)peryl	ene		ND	0.330	
Benzo(k)fluoranthene	ND	0.330		Benzaic acid			ND	0.330	
Bis(2-chloroethoxy)methane	ND	0.330		Bis(2-chloroethyl)	other		ND	0.330	
3ls(2-chloroisopropyl) ether	ND	0.330		Bis(2-ethoxyethyl)			ND	0.330	
3is(2-ethylhexyl) phthalate	ND	0.330		Butyl benzyl phtha			ND	0.330	
Carbazole	ND	0.330		Chrysene	and Co		ND	0.330	
Dibenz(a,h)anthracene	ND	0.090		Dibenzofuran			ND	0.330	
Diethyl phthalate	ND	0.330		Dimethyl phthalat			ND	0.330	
Di-n-butyl phthalate	ND	0.330		Di-n-octyl phthala			ND	0.330	
luoranthene	ND	0.330		Fluorene			ND	0.330	
lexachlorobenzene	ND	0.330		Hexachlorobutadi	270				
lexachlorocyclopentadiene	ND	0.330		Hexachloroethane				0.330	
ndeno(1,2,3-cd)pyrene		0.330		isophorone	,			0.330	
a.p-Cresol (3.4-Methylphenol)		0.330		*				0.330	
litrobenzana		0.260		Naphthalene N-nitrosodimethyla	ama la c			0.330	
I-Nitrosodi-n-propylamine		0.090						0.330	
-Cresol (2-Methylphenol)		0.330		N-Nitrosodiphenyl Pentachloropheno				0.330	
henanthrene		0.330		Phenol	1			0.330	
yrene		0.330		-				0.330	
3.4	SURROGATE	u.000		Pyridine	T 13.64000		ND	0.330	
	Surr: 2-Fluorophe Surr: Nitrobenzen Surr: Phenol-d5			%RECOVERY 56.1 71.7	LIMITS 21 • 96 44 • 100	QUAL			
	Surr: 2-Fluorobiph	enyl		71.2 63,2	45 - 98 53 - 104				
	Surr: 2,4,6-Tribron	nophenol		90.8	55 - 136				
•	Surr: Terphenyl-d	14		103	62 - 116				

Data Release Authorized By:

Date:

Christina Breen, Laboratory Supervisor

Case Narrative

CLIENT:

Gabriel Environmental Services

WO#:

1508025

Project:

115 W. Indian Trail, Aurora

Date:

8/18/2015

Gabriel Environmental Services: IL ELAP/NELAC Accreditation #100239

This report in its entirety consists of the documents listed below. All documents contain the Gabriel Environmental Services Work Order Number assigned to this report.

- 1. Paginated Report including: Case Narrative and Analytical Results.
- 2. Copies of the Chain of Custody Documents supplied with this sample set.

Concentrations reported with an E flag in the Qual field are values that exceed the upper quantification range. There is greater uncertainty associated with these results and data should be considered as estimated.

Test results meet all requirements of TNI unless otherwise noted below.

Any comments or problems with the analytical events associated with this report are noted below.

Semivolatiles, Solid and Chemical Materials was Sub Contracted.

Case Narrative

CLIENT:

Gabriel Environmental Services

WO#:

1508025

Project:

115 W. Indian Trail, Aurora

Date:

8/18/2015

	Qua	alifiers	
Flag	Description	Flag	Description
#	Result exceeded MCL or Permit Limit	MDL	Method Detection Limit
†	No matrix spikes; Sample was analyzed in duplicates	Mi	Matrix interference
*	Result based on (MDL) Method Detection Limit	MS	Matrix spikes outside of Control Limits
<	Analyte not detected at or above the reporting limit	N	Analyte is not part of our NELAC accreditation.
Α	This value is the average of replicate analyses	NA	Not available/not applicable
В	Analyte detected in associated method blank/Blank was not within Quality control limits	ND	Analyte not detected
BOD Test	All (BOD's) biological Oxygen Demand analyses are read and set after 2pm.	Passed	For Paint Filter: No Free liquid present. For organic matter: No Precipitation present.
BRL	Analyte detected Below Reportable Limits	P	For screening purposes only
C	Result based on Chromium, total analysis.	Q	Recovery outside control limits, Matrix effect
D	Surrogates diluted out; recovery not available	R	%RPD Relative Percent Difference was not with quality control limits.
E	Estimated result; concentration exceeds calibration.	RL	Reporting Limit
F	Field measurement	s	Laboratory control standard outside of Quality Control Limits
Failed	For Paint Filter: Free liquid present. For Organic Matter: Precipitation present.	SUB	Analysis performed by subcontractor
G+	Glucose/glutamic acid standard recovery was above laboratory limit but below required method limit 115.4%	τ	Result based on Total Cyanide
G-	Glucose/glutamic acid standard recovery was below method limit 84.6%	U	Result based on Total Sulfide
G	Glucose/glutarnic acid standard recovery was below laboratory limits but above required method limit 84.6%	NES	Not enough sample to run analysis
н	Analysis or extraction exceeded holding time.	FPC	Flow Proportional Composite
J	Concentration less than reporting limit; based on detection limit. Estimated Result.	HSD	Hammond Sanitary District
l	Analysis performed on delonized leachate	GSD	Gary Sanitation District
m	Manual Integration used to determine area response.	See COC	Sample temperature upon receipt exceeded 0-6C

Quantitation Report

Vial: 100

Operator: AD

Data File : C:\HPCHEM\1\DATA\081315\V00014.D Acq On : 13 Aug 2015 3:38 pm Sample : 1508025-001A 5.38g/5mL

Misc : SAMP VOC SCW MS Integration Params: RTEINT.P Quant Time: Aug 14 9:47 2015

Quant Results File: 081215SL.RES

: C:\HPCHEM\1\METHODS\081215SL.M (RTE Integrator)

Title : 8260B V3 SO
Last Update : Thu Aug 13 08:20:26 2015
Response via : Initial Calibration

Method

TIC: V00014.D

Multiplr: 1.00

. V3

Inst

										:	14 50 10
			·								
										1150 12 00 12 50 13 00 13 50 11 00	12.00 12.00 15.00
		୧.(ମମଧ୧) ୫ଲ	əzuadoronları	wig-d	('(!). Þf	Oelbane TCP		isonopia Putylbenzene,	1-179J	1 00 11 50	22.4
						****	(i) gp-auazu		The second secon	10:00 10:50 11:00	
			•							9.00 9.50	}
							sts	48 (2M64	Tolue	8.00 8.50	
										05.7 00.7 0	
								ezuedonanβıΩ		0 6.00 6.50	
							S.(ARU R))er	and seem on the	hatae6f0	0 5.00 5.50	
								⊃T, <u>∌</u>	ê∄iagerîlastk	· · · · · · · · · · · · · · · · · · ·	
									OT, anota	3.00	
				·	÷					1.50 2.00 2.50	
2000000	4500000	4000000	3500000	3000000	2500000	2000000	1500000	1000000	200000		20000

V00014.D 081215SL.M

Fri Aug 14 09:48:07 2015

Date Poth : 0:\data\1508\1508.4\

Data File : E98896.D

Acq On : 15 Aug 2015 8:58 am

1508025-601A

ä

· 经

Operator: NEAL
Sample: 15-4164-001 GABRL BSOX 8-11-15
Misc. 15-14g/lmL, 25uL ISTD/mL SOIL
ALS Viad. 135 Sample Multiplier: 1

The source of E

Quant Time: Aug 15 09:30:13 2015
Quant Method: C:\MSDCHEM\1\METHODS\E8270C2.M
Quant Title: Semi-Volatile Analysis by Method 8270/625

QLast Update : Thu Jul 30 13:53:05 2015

Response via : Initial Calibration

150x025-007A

Data Path : C:\data\1508\150814\

Data File : F98897.D

Acq On : 15 Aug 2015 9:37 am

Operator : NEAL Sample

Misc

ij

, y, (4) 4

: 15-4164-002 GABRL BSOX 8-11-15 : 30.15g/lmL, 25uL 1STD/mL SOIL

ALS Vial : 36 Sample Multiplier: 1

Quant Time: Aug 15 10:09:12 2015 Quant Method : C:\MSDCHEM\1\METHODS\E8270C2.M

Quant Title : Semi-Volatile Analysis by Method 8270/625

QLast Update: Thu Jul 30 13:53:05 2015

Response via : Initial Calibration

.M Sat Aug 15 10:09:18 2015 * 12

1508035 005C

Bage: 2

Date Path : C: data\/308\150814.

Date File : E98898.D Acq On : 15 Aug 20

: 15 Aug 2015 10:17 am

Operator : NEAL

Sample : 15-4164-C03 GABRL BSOX 8-11-15 : 30.15g/lmL, 25uL ISTD/mL SOIL Misc

ALS Vial : 37 Sample Multiplier: 1

Quant Time: Aug 15 10:49:26 2015 Quant Method : C:\MSDCHEM\1\METHODS\E8270C2.M

Quant Title : Semi-Volatile Analysis by Method 8270/625 QLast Update : Thu Jul 30 13:53:05 2015 Response via : Initial Calibration

Data Path : C:\data\1506\150614\

Data File : E98899.D

Acq On : 15 Aug 2015 10:56 am

NEAL Operator

: 15-4164-004 GABRL BSOX 8-11-15

Sample Misc : 30.31g/1mL, 25uL ISTD/mL SOIL 1508025-007A

ALS Vial Sample Multiplier: 1 : 38

Quant Time: Aug 15 11:28:28 2015 Quant Method: C:\MSDCHEM\1\METHODS\E8270C2.M Quant Title: Semi-Volatile Analysis by Method 8270/625 Qlast Update: Thu Jul 30 13:53:05 2015 Response via: Initial Calibration

E8270C8 M Sat Aug 15 11:28:29 2015

CAENL environmental services chain of custody record

GABRIEL ROCKHORD
THE Estimation for the form
Rechford, d. 61 tot
Phone (R15) 112-3177
Fax (R15) 122-3177

GABRIEL HKHELAND 8521 Nemody Ave Highland, IN 46322 Phóre (216) 472-1110 Fis (219) 972-1110

GABRIEL WINCONSIN C 1350 S. SPANIME 41.2 STUTIONIL WILLIAM PROSECULD 88(4) 268 P

GAURIEL CHICAGO 142) N. II. STON AVE Chicago, IL 60142 Phinte(771) 485-413 Pax (773) 486-6001

137 (013) AN (311) AN (311)	SUPPORT PERSONNEL	PROJECT DLE DATE	LOG NUMBER	100 000 T		8 8		(A)	energelell, bizano	_	Color		75 75 M	The second secon	Remarks / Conments	*
The Action of the Control of the Con	PARAMETERS	MYALUE PASTS SECED SECES	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	The state of the s	2 22 2			A CONTRACT OF THE PROPERTY OF		A Control of the Cont					Turn Around Time (TAT) Reg. 5-10 days RUSH TAT-Subject to Approval/Surcharge Date medical	The state of the s
A SECTION AND ADDRESS OF THE PROPERTY OF THE P	Aura			SAMPLED CLIENT FIELD ID	(3) 10 Level	(5) 7-2	(34)	1				֓֞֞֓֞֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓			Month of Man	Collect Management
	The Land Tail	KOO	ENAME	TYPE STYLEFY YOLUNE	20 - CB - 700 - C				** 2*01		7.5%				West of the second	A DEL
ラストないこのの				S I	W W								9	nature).		O TOTAL STATE OF THE PARTY OF T

SAMPLE INFOR

Z Z DATE

ADINESS

するが関 PROJECT NO.

Marter Coles.
A O. Squeone SE ShineEsharme DN - Dribbing Water NAQ - Ken Aqueons Liquid.
BY - Biological Tissues S - Sold CV - Clemical Winte.

Deservation Courses
A=Note: B = HCL C = HSQ, D=HNO, E=D1 Ht, O P = Mechanical
G=NAOH H= Station Biraffare Solvion 1 = Sodium Trinsulfare 1 : Offer

Ice Present (Apphyo

Receipt Temp.

Received Bys. (Mannater)

GABRIEL.

Environmental Services

APPENDIX B

GABRIEL

Environmental Services
1421 N. Elston Ave.
Chicago, Illinois 60622
Phone: 773,486,2123 Fax:773,486,0004

Soil Boring Log

Boring ID:

Soil Boring Information

C-1

Total Depth:

PROJECT INFORMATION

PROJECT:

City of Aurora Development Services

SITE LOCATION:

115 West Indian Trail, Aurora

JOB NO.:

0701544

LOGGED BY: PROJECT MANAGER: Chris Benson

Jillian Hade

DRILLER:

Chris Benson

RIG TYPE:

2.125 Direct Push Geoprobe

SAMPLE DEVICE:

Geoprobe 6600

DATE:

August 05, 2015

Depth	Soil Samples	Soil Description	Sample Analyzed	PID	Sample Recovery	Comments	TSF	
07			7.1.0.7200		1 Recovery]
		ASPHALT						
		GRAVEL: Gravel Fill, Loose						
		SAND: Brown/Grey Sand and Rocks, Loose, Olfactory						
-4 -		BEDROCK: Obstructed at 4'	SVOC, %TS	18.5	60%	Dry		

GABRIEL
Environmental Services
1421 N. Elston Ave.
Chicago, Illinois 60622
Phone: 773,486,2123 Fax:773,486,0004

Soil Boring Log

Boring ID:

C-2

Total Depth:

13'

PROJECT INFORMATION

PROJECT:

City of Aurora Development Services

SITE LOCATION:

115 West Indian Trail, Aurora

JOB NO.:

0701544

LOGGED BY:

Jillian Hade PROJECT MANAGER: Chris Bancon Soil Boring Information

DRILLER:

Chris Benson

RIG TYPE:

2.125 Direct Push Geoprobe

SAMPLE DEVICE:

Geoprobe 6600

DATE:

August 05, 2015

ROJEC	ECT MANAGER: Chris Benson				DATE:	August 05, 2015	
Depth	Soil Samples	Soil Description	Sample Analyzed	PIC	Sample Recovery	Comments	TSF
0		GRAVEL: White/Red Gravel Fill, Loose					
-4-		CLAY: Brown Clay, Firm					
		CLAY: Tan Clay, Firm	SVOC, %TS	0.7	40%	Dry	
-8 -		CLAY: Brown Clay, Soft					
	<u>ÖZÖZÜ</u>	GRAVEL: Gravel Fill, Loose CLAY: Grey Clay, Firm		2.2	100%	Dry	
2 -		CLAY: Brown Clay, Soft		0.7	60%	Saturated Wet	
	A. 30	Fill, Loose BEDROCK: Obstructed at 13'					

GABRIEL

Environmental Services 1421 N. Elston Ave. Chicago, Illinois 60622 Phone: 773.486.2123 Fax:773.486.0004

Soil Boring Log

Boring ID:

C-3

Total Depth:

10'

PROJECT INFORMATION

PROJECT:

City of Aurora Development Services

SITE LOCATION:

115 West Indian Trail, Aurora

JOB NO.:

0701544

LOGGED BY:

Jillian Hade PROJECT MANAGER: Chris Benson Soil Boring Information

DRILLER:

Chris Benson

RIG TYPE:

2.125 Direct Push Geoprobe

SAMPLE DEVICE:

Geoprobe 6600

DATE:

August 05, 2015

Sample Analyzed	PID	Sample Recovery	Comments	TSF
sphait,				
Fine				
KFILL:				
avel				
Clay,				
п т·	108.5	20%	Super Saturated	
ay,				
SVOC, %TS			ļ	
Clay,				
	4.8		Dry	
	sphalt, n Fine KFILL: ose avel ILT: ay, SVOC,	sphalt, n Fine KFILL: ose avel ILT: ay, SVOC, %TS	sphalt, n Fine KFILL: ose avel ILT: ay, SVOC, %TS Clay, V	sphalt, n Fine KFILL: ose avel ICIay, SVOC, %TS Clay, Y

GABRIEL
Environmental Services
1421 N. Elston Ave.
Chicago, Illinois 60622
Phone: 773.486.2123 Fax:773.486.0004

Soil Boring Log

Boring ID:

C-4

Total Depth:

7'

PROJECT INFORMATION

PROJECT:

City of Aurora Development Services

SITE LOCATION:

115 West Indian Trail, Aurora

JOB NO.: LOGGED BY: 0701544 Jillian Hade

PROJECT MANAGER: Chris Benson

Soil Boring Information

DRILLER:

Chris Benson

RIG TYPE:

2.125 Direct Push Geoprobe

SAMPLE DEVICE:

Geoprobe 6600

DATE:

August 05, 2015

Depth	Soil Samples	Soil Description	Sample Analyzed	PID	Sample Recovery	Comments	TSF
0		GRAVEL: Gravel, Loose					
-4 -		CLAY: Brown Clay, Soft					
-		ASPHALT: Asphalt, Loose CLAY: Brown Clay, Firm	SVOC, %TS	1.9	20%	Dry	
-8		SAND: Tan Sand and Rocks, Loose, Olfactory BEDROCK: Obstructed at 7'		2.4		Dry	,

GABRIEL.

Environmental Services

APPENDIX C

Environmental Services

1. Executive Summary

Gabriel Environmental Services (Gabriel) was retained to conduct a Phase II Environmental Investigation at the property located at 115 West Indian Trail in Aurora, Illinois. This investigative action was performed to address the conditions of the subsurface soils on the property based on findings from a Phase I Environmental Site Assessment (ESA) conducted by Gabriel on May 15, 2015. This Phase I ESA noted two (2) Recognized Environmental Conditions (RECs) associated with the subject property: the subject property has a one thousand (1000) gallon UST (underground storage tank) that resulted in a LUST incident (which has since received a NFR letter from the IEPA) and the site was previously used as a chemical works and foundry. See Appendix C for the Phase I ESA Conclusions.

A total of nine (9) soil borings were advanced into the subsurface soils at the subject property on July 2, 2015. Groundwater sample collection was attempted but unsuccessful due to site geology. See Soil Boring Location Map in Appendix A for boring locations. Field screening of samples collected from the borings, including the use of a Photoionization Detector (PID), revealed no contamination in representative soil samples.

USEPA Method 8260: Volatile Organic Compound (VOC) analysis revealed no detections of contamination. Complete Laboratory Results are contained in Appendix A.

USEPA Method 8260: Semi-Volatile Organic Compound (SVOC) analysis revealed Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Carbazole, and Dibenzo(a,h)anthracene above the IEPA's strictest remedation objectives in soil sample B-6 (1'). Complete Laboratory Results are contained in Appendix A.

USEPA Methods 6010 & 7470: RCRA Metals and Phenol analysis revealed slightly elevated detections of Mercury and Lead in soil sample Outside Pile. Complete Laboratory Results are contained in Appendix A.

Based on field screening and laboratory analysis, it appears that former site operations, or mixed fill emplaced at the site have modestly impacted the subsurface soils at 115 W Indian Trail in Aurora, Illinois. The results, however, are fairly typical of Chicago area commercial/industrial soils, with the exception of B-6.

Gabriel recommends additional soil borings and analysis to further delineate the contamination on site.

Environmental Services

Mr. Karna Sandri

9-2-15

Re: 115 Indian Trail / Aurora - Remedial Cost estimate

Gabriel Environmental Services recently performed a number of Focused Environmental Borings at the aforenoted property.

A moderate area of contamination was found to exist in the center of the property, under the existing building. None of the contamination found is an imminent danger to site occupants, or, perhaps future occupants, if the building were to remain. Because of this contamination, we would recommend either removal of the contamination (if the building will be demolished soon), or, entrance of the site into IEPA's SRP program, the goal of which would be to procure a NFR (No Further Remediation) letter for the property.

Based upon the results of the testing performed during our investigation, we believe that, should the decision be made to seek a NFR Letter, it is unlikely that the Illinois Environmental Protection Agency (IEPA) will require any large amount of active site remediation prior to site closure and issuance of an NFR Letter. They might, however require that a new impervious cap be emplaced over the contaminant zone.

Our best cost estimate for finalizing the closure paperwork, is \$33,500 - \$67,500, and our best estimate for a worst-case scenario \$68,000 and \$87,500+.

The estimated time frame for receipt of an NFR letter is 11 to 18+ months. Both the timeline and expenses may change dependent on the IEPA's review of the site.

Should the decision be made to remove the contaminated soil following building demolition, the estimated cost for same is \$95,000 - \$176,500+.

John Polich, P.E.

President '

Gabriel Environmental Services

Fax: (262) 886-9510

Proposal

August 18th 2015.

Karna Sandri 115 Indian Trail Aurora, IL 630-675-1908

Re: 115 Indian Trail. Aurora, IL

Asbestos Project Management proposes to provide all labor, material and equipment to perform the following:

 Removal and Disposal of Asbestos Containing Transite Panels On exterior Roof of Building

All work practices to adhere and comply with applicable OSHA and Illinois Department of Public Health rules and regulations. All workers to be individually Illinois Department of Public Health licensed.

Asbestos Project Management will provide clearance air monitoring for each work area to be analyzed by third party laboratory.

Total cost includes legal disposal of Asbestos waste material and necessary permits

Labor Costs:	One Hundred Five Man Days (105) @ \$900.00 each	\$94,500.00
Dumpsters:	Fifteen 8,000 Lb Dumpsters @ 1,500.00 each	\$22,500.00
Materials:	Thirteen Thousand Five Hundred Dollars	\$13,500.00

Total Cost: One Hundred Thirty Thousand Five Hundred Dollars \$130,500.00

Deposit required before work can begin

Clyde Keller
Asbestos Project Management
IDPH License # 100-021
630-291-7111
Asbestosprojectmang@yahoo.com

AMERICAN LAND TITLE ASSOCIATION SINGLE FORM POLICY-1970 (Amended 10-17-70)

CHICAGO TITLE INSURANCE COMPANY

SUBJECT TO THE EXCLUSIONS FROM COVERAGE, THE EXCEPTIONS CONTAINED IN SCHEDULE B AND THE PROVISIONS OF THE CONDITIONS AND STIPULATIONS HEREOF, CHICAGO TITLE INSURANCE COMPANY, a Missouri corporation, herein called the Company, insures, as of Date of Policy shown in Schedule A, against loss or damage, not exceeding the amount of insurance stated in Schedule A, and costs, attorneys' fees and expenses which the Company may become obligated to pay hereunder, sustained or incurred by the insured by reason of:

- 1. Title to the estate or interest described in Schedule A being vested otherwise than as stated therein:
- 2. Any defect in or lien or encumbrance on such title;
- 3. Lack of a right of access to and from the land; or
- 4. Unmarketability of such title;

and in addition, if a mortgage is referred to in Schedule A as the insured mortgage, by reason of:

- 5. The invalidity or unenforceability of the lien of the insured mortgage upon said estate or interest except to the extent that such invalidity or unenforceability, or claim thereof, arises out of the transaction evidenced by the insured mortgage and is based upon

とうしょう とうしょう こうしょうしょう こうしょうしょう こうしょうしゅう

- (b) any consumer credit protection or truth in lending law.
- 6. The priority of any lien or encumbrance over the lien of the insured mortgage;
- 7. Any statutory lien for labor or material which now has gained or hereafter may gain priority ever the lien of the insured mortgage, except any such lien arising from an improvement on the land contracted for and commenced subsequent to Date of Policy not financed in whole or in part by proceeds of the indebtedness secured by the insured mortgage which at Date of Policy the insured has advanced or is obligated to advance; or
- 5. The invalidity or unenforceability of any assignment, shown in Schedule A, of the insured mortgage or the failure of said assignment to vest title to the insured mortgage in the named insured assignee free and clear of all liens.

In Witness Whereof, CHICAGO TITLE INSURANCE COMPANY has caused this policy to be signed and sealed as of the date of policy shown in Schedule A, the policy to become valid when countersigned by an authorized signatory.

CHICAGO TITLE INSURANCE COMPANY

Issued by: KANE COUNTY OFFICE 113 South Third Street Geneva, Illinois 60134

President. ATTEST:

Secretary.

IMPORTANT

This policy necessarily relates solely to the title as of the date of the policy. In order that a purchaser of the real estate described herein may be insured against defects, liens or encumbrances, this policy should be reissued in the name of such purchaser.

EXCLUSIONS FROM COVERAGE

The following matters are expressly excluded from the coverage of this policy:

- Any law, ordinance or governmental regulation (including but not limited to building and zoning ordinances) restricting or regulating or prohibiting the occupancy, use or enjoyment of the land, or regulating the character, dimensions or location of any improvement now or hereafter erected on the land, or prohibiting a separation in ownership or a reduction in the dimensions or area of the land, or the effect of any violation of any such law, ordinance or governmental regulation.
- 2. Rights of eminent domain or governmental rights of police power unless notice of the exercise of such rights appears in the public records at Date of Policy.
- 3. Defects, liens, encumbrances, adverse claims, or other matters (a) created, suffered, assumed or agreed to by the insured claimant; (b) not known to the Company and not shown by the public records but known to the insured claimant either at Date of Policy or at the date such claimant acquired an estate or interest insured by this policy or acquired the insured mortgage and not disclosed in writing by the insured claimant to the Company prior to the date such insured claimant became an insured hereunder; (c) resulting in no loss or damage to the insured claimant; (d) attaching or created subsequent to Date of Policy (except to the extent insurance is afforded herein as to any statutory lien for labor or material); or (e) resulting in loss or damage which would not have been sustained if the insured claimant had paid value for the estate or interest insured by this policy. The provisions of this sub paragraph (e) shall not apply if this policy is issued to the owner of the indebtedness secured by the insured mortgage.
- 4. Unenforceability of the lien of the insured mortgage because of failure of the insured at Date of Policy or of any subsequent owner of the indebtedness to comply with applicable "doing business" laws of the state in which the land is situated.

CONDITIONS AND STIPULATIONS

1. Definition of Terms

The following terms when used in this policy mean:

- (a) "insured": the insured named in Schedule A, and, subject to any rights or defenses the Company may have had against the named insured, those who succeed to the interest of such insured by operation of law as distinguished from purchase including, but not limited to, heirs, distributees, devisees, survivors, personal representatives, next of kin, or corporate or fiduciary successors. The term "insured" also includes (i) the owner of the indebtedness secured by the insured mortgage and each successor in ownership of such indebtedness (reserving, however, all rights and defenses as to any such successor who acquires the indebtedness by operation of law as described in the first sentence of this subparagraph (a) that the Company would have had against the successor's transferor), and further includes (ii) any governmental agency or instrumentality which is an insurer or guarantor under an insurance contract or guaranty insuring or guaranteeing said indebtedness, or any part thereof, whether named as an insured herein or not, and (iii) the parties designated in paragraph 2(a) of these Conditions and Stipulations.
- (b) "insured claimant": an insured claiming loss or damage here-under.
- (c) "knowledge": actual knowledge, not constructive knowledge or notice which may be imputed to an insured by reason of any public records.
- (d) "land": the land described, specifically or by reference in Schedule A, and improvements affixed thereto which by law constitute real property; provided, however, the term "land" does not include any property beyond the lines of the area specifically described or referred to in Schedule A, nor any right, title, interest, estate or easement in abutting streets, roads, avenues, alleys, lanes, ways or waterways, but nothing herein shall modify or limit the extent to which a right of access to and from the land is insured by this policy.
- (e) "mortgage" mortgage, deed of trust, trust deed, or other security instrument.
- (f) "public records": those records which by law impart constructive notice of matters relating to said land.

2. (a) Continuation of Insurance after Acquisition of Title

If a mortgage is referred to in Schedule A as the insured mortgage, this policy shall continue in force as of Date of Policy in favor of an insured who acquires all or any part of the estate or interest in the land described in Schedule A by foreclosure, trustee's sale, conveyance in lieu of foreclosure, or other legal manner which discharges the lieu of the insured mortgage, and if the insured is a corporation, its transferce of the estate or interest so acquired, provided the transferce is the parent or wholly owned subsidiary of the insured; and in favor of any governmental agency or instrumentality which acquires all or any part of the estate or interest pursuant to a contract of insurance or guaranty insuring or guaranteeing the indebtedness secured by the insured mortgage; provided that the amount of insurance hereunder after such acquisition, exclusive of costs, attorneys' fees and expenses which the Company may become obligated to pay, shall not exceed the least of:

- (i) the amount of insurance stated in Schedule A;
- (ii) the amount of the unpaid principal of the indebtedness as defined in paragraph 8 hereof, plus interest thereon, expenses of foreclosure and amounts advanced to protect the lien of the insured mortgage and secured by said insured mortgage at the time of acquisition of such estate or interest in the land; or
- (iii) the amount paid by any governmental agency or instrumentality, if such agency or instrumentality is the insured claimant, in the acquisition of such estate or interest in satisfaction of its insurance contract or guaranty.

(b) Continuation of Insurance after Conveyance of Title

The coverage of this policy shall continue in force as of Date of Policy in favor of an insured so long as such insured retains an estate or interest in the land, or holds an indebtedness secured by a purchase money mortgage given by a purchaser from such insured, or so long as such insured shall have liability by reason of covenants of warranty made by such insured in any transfer or conveyance of such estate or interest; provided, however, this policy shall not continue in force in favor of any purchaser from such insured of either said estate or interest or the indebtedness secured by a purchase money mortgage given to such insured.

SCHEDULE A

Number	Date of Policy	Amount of Insurance
310737	October 17, 1978	\$200,000.00

1. Name of Insured.

PAUL W. SODERSTROM AND DIANA D. SODERSTROM, IN JOINT TENANCY

- 2. The estate or interest in the land described herein and which is covered by this policy is:

 Fee Simple
- 3. The estate or interest referred to herein is at Date of Policy vested in the Insured.
- 4. The land herein described is encumbered by the following mortgage or trust deed, and assignments:

Trust Deed dated October 12, 1978 and recorded on October 17, 1978 as Document No. 1479520 made by Paul W. Doderstrom and Diana D. Soderstrom, his wife, to The Old Second National Bank of Aurora, Trustee for \$81,000.00. (Conveys premises in question and other property)

and the mortgages or trust deeds, if any, shown in Schedule B hereof.

5. The land referred to in this policy is described as follows:

That part of the Southwest quarter of Section 10, Township 38 North, Range 8 East of the Third Principal Meridian, described as follows: Commencing at the Southwest corner of said Southwest quarter; thence North along the West line of said Southwest quarter 11.04 chains; thence North 67° 15' East to the center line of the highway; thence South 22° 45' East along said center line 799.6 feet; thence Northeasterly at right angles to said center line 288.5 feet for the point of beginning; thence Southeasterly 114.83 feet to the Northwest corner of premises conveyed to Aurora Township Road District by Deed dated August 6, 1963 and recorded February 26, 1964 in Book 2220, page 75 as Document 1018320; thence North 78° 20' 56" East along the Northerly line of said premises 128.85 feet; thence North 85° 10' 58" East 100.01 feet;

(Schedule A continued)

thence South 88° 23' 54" East 50.56 feet; thence North 58° 47' East to the center line of Fox River; thence Northerly along the center line of said Fox River to the North line of the Southwest quarter of said Section 10; thence West along the North line of said Southwest quarter to the Easterly line of the right of way of the Chicago and Northwestern Railway Company; thence Southerly along said Easterly right of way line to the Southerly line of Lot 13 in Block 2 of the George Acres, Aurora, extended Easterly; thence Southwesterly along said Southerly line extended and said Southerly line to the Southwest corner of said Lot 13; thence Southeasterly 491.20 feet to the point of beginning (excepting the right of way of the Chicago and Northwestern Railway Company) in the Township of Aurora, Kane County, Illinois.

SCHEDULE B

This policy does not insure against loss or damage by reason of the following exceptions:

General Exceptions:

- (1) Rights or claims of parties in possession not shown by the public records.
- (2) Encroachments, overlaps, boundary line disputes, and any matters which would be disclosed by an accurate survey and inspection of the premises.
- (3) Easements, or claims of easements, not shown by the public records.
- (4) Any lien, or right to a lien, for services, labor, or material heretofore or hereafter furnished, imposed by law and not shown by the public records.
- (5) Taxes or special assessments which are not shown as existing liens by the public records.

Special Exceptions: The mortgage, if any, referred to in Schedule A.

- 1. The interest of Fox River Pleasure Driveway and Park District who is exempt as to taxes on an island (15-10-376-003)
- 2. Existing leases.
- 3. Rights of the United States of America, State of Illinois in and to the islands located opposite premises in question in the Fox River.
- 4. Railroad rights of way, switch and spur tracks.
- 5. Possible water rights and rights in any dams located opposite premises in question in the Fox River, in favor of the owners of property adjoining premises in question.
- 6. Terms, provisions and conditions of any Act of Congress or law of the State of Illinois pertaining to the ownership or use of the islands in Fox River opposite premises in question.
- 7. Rights of the municipality, State of Illinois, and the public in and to any bridge, bridge abutments, piers, etc. across the Fox River opposite premises in question, and right of the municipality, State of Illinois and the United States of America to regulate any such bridge, etc.
- 8. Easement for public utilities, storm and sanitary sewers, if any.
- 9. Perpetual easement in favor of City of Aurora, of the use of the water in the matter of its water supply in and under all that part of a certain island in Fox River in the Town of Aurora, situated North of an old claim line extended from West bank to East bank of said river in Northwest quarter and Northeast quarter of Section 15, Township 38 North, Range 8 East of the Third Principal Meridian, as contained in decree of Circuit Court of Kane County, Illinois, entered May 17, 1911 in Case 18049.

Countersigned

Authorized Signatory

(Schedule B continued)

- 10. Rights of the United States of America, State of Illinois, the municipality and the Public in and to that part of premises in question, falling in the bed of the Fox River, also rights of the property owners in and to the free and unobstructed flow of the waters of said River.
- 11. Rights of the Public, the State of Illinois, County of Kane, and the Municipality in and to that part of the land taken or used for road purposes.
- 12. Notice recorded February 26, 1971 as Document 1184151 by The City of Aurora establishing Indian Trail as a Freeway and restricting access as therein provided.
- 13. Taxes for the year 1978.

CONDITIONS AND STIPULATIONS (Continued)

Defense and Prosecution of Actions—Notice of Claim to be Given by an Insured Claimant

- (a) The Company, at its own cost and without undue delay, shall provide for the defense of an insured in all litigation consisting of actions or proceedings commenced against such insured, or defenses, restraining orders or injunctions interposed against a foreclosure of the insured mortgage or a defense interposed against an insured in an action to enforce a contract for a sale of the indebtedness secured by the insured mortgage, or a sale of the estate or interest in said land, to the extent that such litigation is founded upon an alleged defect, lien, encumbrance, or other matter insured against by this policy.
- (b) The insured shall notify the Company promptly in writing (i) in case any action or proceeding is begun or defense or restraining order or injunction is interposed as set forth in (a) above, (ii) in case knowledge shall come to an insured hereunder of any claim of title or interest which is adverse to the title to the estate or interest or the lien of the insured mortgage, as insured, and which might cause loss or damage for which the Company may be liable by virtue of this policy, or (iii) if title to the estate or interest or the lien of the insured mortgage, as insured, is rejected as unmarketable. If such prompt notice shall not be given to the Company, then as to such insured all liability of the Company shall cease and terminate in regard to the matter or matters for which such prompt notice is required; provided, however, that failure to notify shall in no case prejudice the rights of any such insured under this policy unless the Company shall be prejudiced by such failure and then only to the extent of such prejudice.
- (c) The Company shall have the right at its own cost to institute and without undue delay prosecute any action or proceeding or to do any other act which in its opinion may be necessary or desirable to establish the title to the estate or interest or the lien of the insured mortgage, as insured, and the Company may take any appropriate action under the terms of this policy, whether or not it shall be liable thereunder, and shall not thereby concede liability or waive any provision of this policy.
- (d) Whenever the Company shall have brought any action or interposed a defense as required or permitted by the provisions of this policy, the Company may pursue any such litigation to final determination by a court of competent jurisdiction and expressly reserves the right, in its sole discretion, to appeal from any adverse judgment or order.
- (e) In all cases where this policy permits or requires the Company to prosecute or provide for the defense of any action or proceeding, the insured hereunder shall secure to the Company the right to so prosecute or provide defense in such action or proceeding, and all appeals therein, and permit the Company to use, at its option, the name of such insured for such purpose. Whenever requested by the Company, such insured shall give the Company all reasonable aid in any such action or proceeding, in effecting settlement, securing evidence, obtaining witnesses, or prosecuting or defending such action or proceeding, and the Company shall reimburse such insured for any expense so incurred.

4. Notice of Loss-Limitation of Action

In addition to the notices required under paragraph 3(b) of these Conditions and Stipulations, a statement in writing of any loss or damage for which it is claimed the Company is liable under this policy shall be furnished to the Company within 90 days after such loss or damage shall have been determined and no right of action shall accrue to an insured claimant until 30 days after such statement shall have been furnished. Failure to furnish such statement of loss or damage shall terminate any liability of the Company under this policy as to such loss or damage.

5. Options to Pay or Otherwise Settle Claims

The Company shall have the option to pay or otherwise settle for or in the name of an insured claimant any claim insured against or to terminate all liability and obligations of the Company hereunder

by paying or tendering payment of the amount of insurance under this policy together with any costs, attorneys' fees and expenses incurred up to the time of such payment or tender of payment by the insured claimant and authorized by the Company. In case loss or damage is claimed under this policy by the owner of the indebtedness secured by the insured mortgage, the Company shall have the further option to purchase such indebtedness for the amount owing thereon together with all costs, attorneys' fees and expenses which the Company is obligated hereunder to pay. If the Company offers to purchase said indebtedness as herein provided, the owner of such indebtedness shall transfer and assign said indebtedness and the mortgage and any collateral securing the same to the Company upon payment therefor as herein provided.

6. Determination and Payment of Loss

- (a) The liability of the Company under this policy shall in no case exceed the least of:
 - (i) the actual loss of the insured claimant; or
 - (ii) the amount of insurance stated in Schedule A, or, if applicable, the amount of insurance as defined in paragraph 2(a) hereof; or
 - (iii) if this policy insures the owner of the indebtedness secured by the insured mortgage, the amount of the indebtedness secured by the insured mortgage as determined under paragraph 8 hereof, at the time the loss or damage insured against hereunder occurs, together with interest thereon.
- (b) The Company will pay, in addition to any loss insured against by this policy, all costs imposed upon an insured in litigation carried on by the Company for such insured, and all costs, attorneys' fees and expenses in litigation carried on by such insured with the written authorization of the Company.
- (c) When liability has been definitely fixed in accordance with the conditions of this policy, the loss or damage shall be payable within 30 days thereafter.

7. Limitation of Liability

No claim shall arise or be maintainable under this policy (a) if the Company, after having received notice of an alleged defect, lien or encumbrance insured against hereunder, by litigation or otherwise, removes such defect, lien or encumbrance or establishes the title, or the lien of the insured mortgage, as insured, within a reasonable time after receipt of such notice; (b) in the event of litigation until there has been a final determination by a court of competent jurisdiction, and disposition of all appeals therefrom, adverse to the title or to the lien of the insured mortgage, as insured, as provided in paragraph 3 hereof; or (c) for liability voluntarily assumed by an insured in settling any claim or suit without prior written consent of the Company.

8. Reduction of Liability

(a) All payments under this policy, except payments made for costs, attorneys' fees and expenses, shall reduce the amount of the insurance pro tanto; provided, however, if the owner of the indebtedness secured by the insured mortgage is an insured hereunder, then such payments, prior to the acquisition of title to said estate or interest as provided in paragraph 2(a) of these Conditions and Stipulations, shall not reduce pro tanto the amount of the insurance afforded hereunder as to any such insured, except to the extent that such payments reduce the amount of the indebtedness secured by such mortgage.

Payment in full by any person or voluntary satisfaction or release of the insured mortgage shall terminate all liability of the Company to an insured owner of the indebtedness secured by the insured mortgage, except as provided in paragraph 2(a) hereof.

(b) The liability of the Company shall not be increased by additional principal indebtedness created subsequent to Date of Policy, except as to amounts advanced to protect the lien of the insured mortgage and secured thereby.

No payment shall be made without producing this policy for endorsement of such payment unless the policy be lost or destroyed,